Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Техническое обслуживание и ремонт

Читайте также:
  1. III. Виды работ по строительству, реконструкции и капитальному ремонту
  2. IV. УЧЕБНО-МЕТОДИЧЕСКОЕ, ИНФОРМАЦИОННОЕ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ
  3. IV. УЧЕБНО-МЕТОДИЧЕСКОЕ, ИНФОРМАЦИОННОЕ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ
  4. А.учета затрат на ремонт ОС.
  5. Анимационное обслуживание на предприятиях сервиса.
  6. Безопасность при эксплуатации стационарных сосудов и аппаратов, работающих под давлением. Техническое освидетельствование.
  7. В случае необходимости проведения текущего ремонта жилого помещения, принадлежащего на праве собственности или на праве долевой собственности малоимущему гражданину.
  8. Ветеринарное обслуживание мероприятия
  9. Виды гонок, классификация трасс, организация гонок, мед. обслуживание.
  10. Виды и периодичность проведения ТО и ремонта.

Техническое обслуживание – по ГОСТ 18322.

Восстановление – процесс перевода объекта в работоспособное состояние из неработоспособного состояния.

Ремонт – по ГОСТ 18322.

Обслуживаемый объект – объект, для которого проведение технического обслуживания предусмотрело нормативно-технической документацией и (или) конструкторской (проси нон) документацией.

Необслуживаемый объект – объект, для которого проведение технического обслуживания не предусмотрено нормативно-технической и (или) конструкторской (проектной) документацией.

Восстанавливаемый объект – объект, для которого в рассматриваемой ситуации проведение восстановления работоспособного состояния предусмотрено в нормативно-технической и (или) конструкторской (проектной)) документации.

Невосстанавливаемый объект – объект, для которого в рассматриваемой ситуации проведение восстановления работоспособного состояния не предусмотрено в нормативно-технической и (или) конструкторской (проектной) документации.

Ремонтируемый объект – объект, ремонт, которого возможен и предусмотрен нормативно-технической, ремонтной и (или) конструкторской (проектной) документацией.

Неремонтируемый объект – объект, ремонт которого не возможен или не предусмотрен нормативно-технической, ремонтной и (или) конструкторской (проектной) документацией.

Теория надёжности содержит сформировавшуюся систему терминов, определений и понятий. Большинство из них приведено в Государственных стандартах, объединённых в единую систему. Некоторые из основных понятий рассмотрены выше. В процессе изучения разделов дисциплины необходимые термины и определения будут подробно разъясняться.

2. Проблема надёжности технических объектов и пути её решения

Развитие техники характеризуется разработкой и внедрением сложных технических систем и комплексов. В промышленности создаются и уже эксплуатируются объекты с единичной мощностью вырабатываемой энергии несколько тысяч мегаватт, существуют разветвлённые линии транспортировки энергии с высокими параметрами рабочих сред, сложные установки трансформации и потребления энергии. Как правило, получение и передача энергии в любых её формах связаны с использованием высоких температур и давлений жидкостей и газов.

Для современных объектов промышленной энергетики характерно использование материалов, которые подвергаются огромным нагрузкам: механическим, электрическим, радиационным, тепловым, химическим, биологическим и пр. Требования к надёжности таких объектов повышаются в связи с ростом опасности, которую они могут представить для окружающей среды при аварии. Под надёжностью в упрощённом смысле понимают способность объекта выполнять заданные функции во время эксплуатации. Надёжность как внутреннее свойство сложной системы закладывается на этапе проектирования, обеспечивается в процессе конструкторской отработки и производства и реализуется в процессе применения системы по прямому назначению.

Эти три составляющие процесса формирования и проявления надёжности объектов позволяют говорить об определённой формуле или триаде надёжности: надёжность закладывается в объект при разработке, затем обеспечивается в производстве и только потом реализуется в эксплуатации. В эксплуатации первые два этапа наглядно не проявляются и их роль часто совсем не очевидна для обслуживающего персонала и для потребителя энергии. Однако для специалиста важно понимать закономерности и причины изменения надёжности того или иного объекта, для того чтобы при необходимости управлять процессом эксплуатации. Этому может и должна способствовать теория надёжности – наука о методах обеспечения и сохранения надёжности при проектировании, изготовлении и эксплуатации.

Теория надёжности сравнительно молодая наука. Первые попытки чёткой постановки задачи обеспечения надёжности промышленных изделий относятся лишь к 30-м годам нашего столетия. Тогда преимущественно стремились разработать методы приёмочного контроля массовой промышленной продукции. Дальнейшее развитие проблема поддержания надёжности сложных систем получила во время второй мировой войны при создании и эксплуатации радиолокационных станций, устройств связи и других объектов ответственного назначения, отказ которых мог иметь тяжёлые последствия. В этот же период стали интенсивно развиваться математические методы в теории надёжности. Математика в теории надёжности используется для построения моделей изучаемых процессов, количественной оценки показателей, а также для прогнозирования событий, связанных с обеспечением надёжности.

Применение теории надёжности позволяет решать следующие задачи:
- обосновывать требования к вновь создаваемым промышленным объектам;
- проектировать объекты и системы с требуемым уровнем надёжности;
- планировать объёмы, сроки и способы отработки систем для достижения заданного уровня надёжности;

- обосновывать пути снижения экономических затрат и сокращения времени на отработку изделий;

- повышать качество и стабильность производства;

- выбирать и обосновывать наиболее эффективные мероприятия по обеспечению надёжности на этапах проектирования, конструкторской отработки, изготовления и эксплуатации систем;

- объективно оценивать техническое состояние находящейся в эксплуатации техники;

- разрабатывать научно обоснованные рекомендации, направленные на улучшение техники и методов её эксплуатации.

При решении указанных задач теория надёжности использует несколько важных положений, связанных со случайным характером событий и процессов, происходящих с объектом. Объект в каждый момент времени может находиться только в одном из строго оговоренных состояний. Это состояние может быть известно исследователю с определённой вероятностью, причём закон, определяющий данную вероятность, часто выявляется только при специальных испытаниях или во время эксплуатации.

Отказ объекта рассматривается в теории надёжности как случайное событие. Переход объекта из работоспособного состояния в неработоспособное представляется как случайный процесс, который в свою очередь может состоять из нескольких этапов. Наработка объекта с момента начала эксплуатации до очередного отказа является непрерывной случайной величиной с некоторым законом распределения. Таким образом, ясно, что для получения выводов, рекомендаций и количественных оценок надёжности требуется использовать закономерности теории вероятности и математической статистики.

Современный уровень развития этих наук характеризуется высоким уровнем формализации понятий, определений, выводов и требует определённого развития абстрактного мышления. Решение прикладных задач оценки и прогнозирования надёжности связано с применением элементов регрессионного и корреляционного анализа, методов статистической проверки гипотез распределения случайных величин, интервальной и точечной оценки параметров распределения и некоторых других математических методов. Такими методами владеют, как правило, специалисты с углублённой математической подготовкой.

Одновременно следует отметить, что решение основных задач теории надёжности неразрывно связано с глубоким пониманием физических процессов, происходящих в объектах эксплуатации. Знание закономерностей процессов накопления повреждений при комплексном действии эксплуатационных факторов способствует выявлению причин отказов, установлению их связи с условиями эксплуатации. Это необходимо для построения достоверных моделей надёжности и в конечном итоге для получения корректных количественных оценок. Подобные задачи более близки специалисту в прикладной области знаний.

Таким образом, можно утверждать, что теория надёжности является наукой комплексной, и что математические методы занимают в ней существенное место. Но эти методы должны быть подчинены запросам практики, инженерным требованиям. Поэтому следует ожидать, что наиболее интересные и практически значимые результаты при решении задач обеспечения надёжности объектов энергетики могут быть получены инженерами-энергетиками, которые освоили расчётные методы теории надёжности и имеют твёрдые навыки их применения.

Теория надёжности является развивающейся наукой, имеющей многочисленные связи с современной инженерной практикой. Она родилась из задач практики, и её результаты находят немедленное использование в реальных ситуациях. Несмотря на имеемые к концу 20-го века положительные результаты от применения методов теории надежности в различных отраслях техники, остаются нерешёнными многие важные проблемы, основные из которых в кратком изложении заключаются в следующем:

- разработка программ ускоренных эквивалентных испытаний для малосерийных или уникальных объектов. Их целью является получение индивидуальной оценки надёжности объектов с длительным сроком службы за ограниченное время испытаний;

- создание методики прогнозирования надёжности объектов в условиях наличия неопределённости действия эксплуатационных факторов и случайного характера процесса потери прочностных свойств материалами основных элементов. Решение этой проблемы способствовало бы предотвращению многочисленных аварий на транспорте и в промышленности;
- управление надёжностью объектов путём выбора оптимальных режимов эксплуатации, планирования технического обслуживания и формирования необходимого комплекта запасных частей;
- оценка надёжности сложных систем с учётом влияния эргатического фактора. Известно, что роль оператора или другого лица, принимающего решение, в отдельных случаях является определяющей в обеспечении безотказности систем. Анализ крупных аварий на транспорте и в энергетике показывает, что создание систем и объектов, защищённых от ошибочных действий человека, и одновременно разработка методов прогнозирования показателей надёжности с учётом таких действий являются чрезвычайно актуальными;
- и ряд других.

Нет сомнения в том, что с дальнейшим развитием технического прогресса возникнут новые проблемы, которые предстоит решать теории надёжности.

 

 

Вопросы для самоконтроля:

1. Что понимается под качеством объекта?

2. Надежность и ее составляющие.

3. Состояния технического объекта.

4. Виды отказов.

5. Временные понятия.

6.




Дата добавления: 2015-05-05; просмотров: 12 | Поможем написать вашу работу | Нарушение авторских прав

<== предыдущая лекция | следующая лекция ==>
Отказы, повреждения, дефекты| для студентов 3 курса ДГТ и 4 курса ЗГТ

lektsii.net - Лекции.Нет - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав