Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Загрязнение радионуклидами, поступающими в биосферу при работе предприятий ядерного топливного цикла

Читайте также:
  1. A. Характеристика нагрузки на организм при работе, которая требует мышечных усилий и энергетического обеспечения
  2. B) Капитал, который используется полностью и переносит стоимость на готовый продукт в течение одного производственного цикла.
  3. c.) Какое из понятий не используется при работе с OO.0 Writer
  4. N недопущение к работе лиц, не прошедших в установленном порядке обучение и инструктаж по охране труда, стажировку и проверку знаний требований охраны труда
  5. V1: {{3}} Тема №3 Финансы предприятий и налоговая система.
  6. V2:Социально педагогическая инновационная и проектная деятельность в молодежной работе
  7. А) Функции директора школы, заместителя директора по учебно-воспитательной работе, организатора внеклассной и внешкольной воспитательной работы.
  8. А. Общие требования, предъявляемые к курсовой работе
  9. А. Общие требования, предъявляемые к курсовой работе
  10. Административно-правовой статус предприятий и учреждений.

Радиоактивные вещества могут поступать в природную среду на всех стадиях этого цикла:

- добыча и переработка урановых и ториевых руд;

- обогащение урана изотопом 235U;

- изготовление тепловыделяющих элементов (твэлов);

- получение ядерной энергии в ядерных реакторах;

- переработка отработавшего ядерного топлива на радиохимических предприятиях и извлечение из него делящихся веществ и радионуклидов, представляющих интерес для народного хозяйства;

- переработка, хранение и захоронение радиоактивных отходов.

Для обеспечения всех стадий ЯТЦ необходима также транспортировка радиоактивных материалов.

Основными источниками потенциальной ядерной опасности на территории России являются предприятия по производству расщепляющегося материала для ядерного оружия - Арзамас-16, Челябинск-40, Коасноярск-45, Томск-7, действующие 11 АЭС, которые дают около 12 % электроэнергии для нашей страны и 7 атомных ледоколов; кроме этого, в бывшем СССР насчитывалось 170 атомных подлодок, на которых находились 324 ректора. Большая часть выведена из употребления, а реакторы являются источниками повышенной радиации.

Несмотря на повышенные требования по безопасной работе ядерных реакторов, количество нарушений их эксплуатации остается высоким, в частности, на АЭС в 1991 г. было 164 таких нарушения, в 1992 г. - 204, в 1993 - 200. Однако уже хорошо известно, что потенциальная опасность имеет свойство реализовываться: 1957 г. - на Северном Урале вблизи г. Кыштым взрыв на военном предприятии "Маяк" с катастрофическими последствиями, 1974 - 1975 гг. - аварии на Ленинградской АЭС, 1978 г. - пожар на Белоярской АЭС, 1986 г. - катастрофа на Чернобыльской АЭС, 1993 г. - авария на Сибирском химическом комбинате (Томск-7).

Добыча урановой (ториевой) руды производится подземным способом (шахты), открытым (карьеры), а в последние два десятилетия также методом подземного выщелачивания металла на месте его залегания — это зависит от конкретных горно-геологических условий и концентрации металла в руде (концентрация урана в руде в виде U3О8 колеблется обычно от 0,1 до 3 %). Подземный способ применяют обычно для месторождений с высоким содержанием урана, залегающих в крепких породах на глубине более 200 - 300 м. На меньших глубинах и с низким содержанием металла применяют открытые способы.

При добыче руды подземным и открытым способами образуются газообразные, жидкие и твердые радиоактивные отходы (РАО). Газообразные радиоактивные выбросы состоят главным образом из Rn-222. В среднем образуется от 0,4 до 8 ГБк Rn-222 на 1 т добываемой руды (разброс зависит от ее качества). Жидкие отходы в основном определяются шахтными водами, образующимися при дренаже, а также водой для технологических целей. Твердые отходы состоят из горной породы и руды с очень низким содержанием урана.

Добытую руду транспортируют на обогатительную фабрику, обычно расположенную неподалеку. Обогащение урановой руды происходит в процессах грохочения, дробления, измельчения и последующего перевода в растворимую в воде двуокись урана UО2. При этом металлы, образующие нерастворимые сульфиды, переходят в шламы. Вместе с сульфидами из процесса уходят также продукты распада урана - радий и его радиационно-опасные дочерние нуклиды, а также Ba, Pb, Bi, Al, Fe, Ca, ионы SО4 и песок. Урановые отходы (хвосты) с обогатительных заводов сбрасываются в виде суспензии, состоящей на 50 % из твердой фракции. Обычно около 85 % активности содержится в илистой фракции. Количество радиоактивных аэрозолей, выбрасываемых в атмосферу из хвостохранилища, зависит от размеров их высохшей части, которая в свою очередь определяется метеорологическими и климатическими факторами. Кстати, радий является радиоактивным элементом, играющим большую роль в технике и медицине, и его можно добывать промышленным способом из шламов, накапливающихся в хвостохранилищах в огромном количестве. Так, при 0,2 % содержании урана в руде на каждые 200 т получаемого урана (годовая потребность АЭС мощностью 1 ГВт) образуется 100 тыс. тонн РАО.

Вблизи действующих обогатительных фабрик в Северной Америке к 1985 г. скопилось около 120 млн. т отходов, и если положение не изменится, то к концу века эта величина возрастет до 500 млн. т. Эти отходы будут оставаться радиоактивными в течение миллионов лет, т.е. будут являться главными долгоживущими источниками облучения населения. Их вклад можно значительно уменьшить, если отвалы покрыть асфальтом или поливинилхлоридом. Конечно, покрытия необходимо будет регулярно менять и также захоранивать.

Урановый концентрат, поступающий с обогатительных фабрик, подвергается дальнейшей переработке на урановых химических и аффинажно-металлургических заводах с целью извлечения урана и очистки его от посторонних примесей. На стадии аффинажа получают полуфабрикат, пригодный для производства металлического урана или гексафторида урана. (Аффинаж — металлургический процесс получения металлов высокой чистоты путем их разделения и отделения от них различных примесей.)

Как известно, в цепной самоподдерживающейся реакции деления ядер под действием тепловых нейтронов участвует только изотоп урана U-235, содержание которого в природном уране составляет 0,71 % (остальная часть принадлежит U-238). Для ядерного топлива необходимо обогащать природную смесь урана изотопом 235U, а это, в свою очередь, требует разделения легкого и тяжелого изотопов урана.

Гексафторид урана (UF6) по своим химическим свойствам близок к идеальному газу и является пока единственным соединением, пригодным для разделения изотопов 235U и 238U. Эта задача решается с помощью молекулярно-кинетических методов (газодиффузия, термодиффузия, центрифугирование) или электромагнитного метода. Для получения UF6 используют, как правило, тетрафторид или очищенную двуокись урана. Необходимо отметить, что UF6, а также F2 и фтористый водород, используемые как реагенты, - весьма токсические газы.

В результате такой переработки образуются газообразные и жидкие РАО (в основном альфа- и бета-излучатели), однако дозы облучения населения от них намного меньше, чем на других стадиях ЯТЦ. Обогащенный уран служит исходным сырьем для производства твэлов ядерных реакторов (твэл состоит из урансодержащего сердечника, заключенного в металлическую оболочку).

В ядерном реакторе осуществляется самоподдерживающийся процесс следующих друг за другом актов деления ядер U-235 под действием нейтронов. Основной частью ядерного реактора является активная зона, в которой находится делящийся материал. В реакции деления ядра образуются два радиоактивных осколка в виде атомов различных элементов и нейтроны. По мере работы реактора число атомов ядерного топлива в нем постепенно уменьшается, "выгорает", а количество осколков, напротив, увеличивается. За активной зоной находится обычно находится отражатель или экран, который частично отбрасывает уходящие нейтроны обратно в активную зону и тем самым способствует протеканию цепной реакции. За экраном располагается биологическая защитаот ионизирующего излучения, которая выполнена в виде толстых бетонных стен или баков с водой.

Для управления цепной реакций служат специальные управляющие стержни, изготовленные из материалов, способных сильно поглощать нейтроны. Введение таких стержней в активную зону приводит к уменьшению количества свободных нейтронов и тем самым к задержке или даже к полному прекращению цепной реакции.

При работе реактора в активной зоне и частично в отражателе выделяется громадное количество энергии, которая в конечном счете проявляется в виде тепла. Для того, чтобы реактор не перегревался и не разрушался, тепло из него необходимо непрерывно отводить. Для этого через активную зону постоянно прокачивается газ, или вода, или какое-нибудь другое вещество, отбирающее тепло из активной зоны и передающее его затем атмосферному воздуху, воде реки или пару, идущему в турбину электростанции. При этом вещество теплоносителя становится радиоактивным в результате его активации нейтронами.

В результате работы АЭС образуются РАО, которые поступают в окружающую среду, т.к. системы очистки не дают 100 %-го эффекта.

К газообразным отходамотносятся радиоактивные благородные газы (РБГ): около десяти радионуклидов Kr и Xe - продуктов деления, 41Ar - продукт нейтронной активации 40Ar, содержащегося в воздухе и в охлаждающей реактор воде или газе. РБГ играют основную роль в формировании дозы внешнего гамма-излучения от АЭС.

Среди аэрозольных радионуклидов, присутствующих в атмосферных выбросах АЭС различных типов насчитывается более 50 биологически значимых.

К жидким отходам относятся пульпы ионообменных смол, фильтроматериалы, кубовые остатки выпарных аппаратов, в которые поступает загрязненная радионуклидами вода при эксплуатации или ремонте реактора. В окружающую среду сбрасываются очищенные, так называемые дебалансные воды, активность которых создается в основном за счет трития в форме тритиевой воды НТО, т.к. система очистки не позволяет выделять тритиевую воду из воды.

К твердым отходам АЭС относятся: твердые отходы, возникающие после отверждения жидких концентрированных отходов; детали оборудования реактора, сеятые с эксплуатации (топливные каналы, насосы, задвижки, фильтры и т.д.; использованный инструмент и приборы; израсходованные материалы (ветошь, спецодежда, бумага и пр.). Твердые отходы до момента захоронения хранятся на площадке АЭС. Количество твердых отходов зависит от типа реактора и не превышает обычно 2000 м3/(ГВт × год).

Величина радиоактивных выбросов у различных реакторов колеблется в широких пределах: не только от одного типа реактора к другому и не только для разных конструкций реактора одного и того же типа, но также для двух разных реакторов одной конструкции. Выбросы могут существенно различаться даже для одного и того же реактора в разные годы, потому что различаются объемы текущих ремонтных работ, во время которых и происходит большая часть выбросов. В конце 1989 г. в 26 странах эксплуатировалось в общей сложности 416 энергетических ядерных реакторов суммарной мощностью 274 ГВт, еще около 100 реакторов строилось.

Значительный вклад в загрязнение биосферы вносят заводы по переработке облученного ядерного топлива. При переработке из него извлекаются уран и плутоний для повторного использования в ядерных реакторах, а также некоторые долгоживущие радионуклиды, которые могут быть использованы в народохозяйственных целях (137Cs, 90Sr и др.). Перед поступлением на переработку твэлы обычно выдерживают не менее 120 суток, чтобы распались до минимального уровня короткоживущие радионуклиды, главным образом I-131.

Весомый вклад в загрязнение биосферы и глобальную дозу облучения населения всего мира вносят также долгоживущие радионуклиды 3H, 14C, 85Kr, 90Sr, 106Ru, 129I, 134Cs, 137Cs и изотопы трансурановых элементов, присутствующие в выбросах и сбросах заводов по переработке облученного ядерного топлива. Для радиохимического завода (РХЗ) мощностью 1500 тонн тяжелого металла (ттм) в год, который перерабатывает облученное топливо от легководных АЭС, расчетное значение индивидуальной годовой эффективной эквивалентной дозы в районе завода (на расстоянии до 100 км) составляет около 250 мкЗв (25 мбэр). Суммарная мощность радиохимического производства в Томске-7 позволяет переработать не менее 5000 ттм в год.

Радиоактивные отходы, образующиеся при переработке топлива, как правило, смешиваются с большим количеством нерадиоактивных химических отходов. Химические отходы сами по себе могут представлять большую опасность для окружающей среды и здоровья людей. Химические отходы переработки можно разделить на три категории.

К первой категории относятся кислотные отходы, получаемые на стадии растворения отработанного топлива. Обычно используется азотная кислота, хотя возможно использование и других кислот. Агрессивность этих кислот (рН обычно меньше 1) порождает ряд серьезных проблем при обращении с отходами, часто приводит к утечкам в трубопроводах, вызывая загрязнение грунтовых вод. Кислоты также ускоряют скорости реакций других составляющих отходов, приводя к образованию горючих газов, например водорода. Кроме того, высокая кислотность приводит к увеличению мобильности таких радиоактивных веществ как плутоний.

Вторая категория химических отходов - разнообразные связывающие вещества, добавляемые для снижения реактивности отходов или для осаждения. Некоторые из этих веществ, например циан (CN), в кислой среде могут образовывать ядовитые газы и другие опасные соединения.

Третья категория химических отходов включает в себя разнообразные органические растворители, такие как трихлорэтилен, трибутилфосфат и др. Многие из них, например четыреххлористый углерод, известны как активные канцерогены. Кроме того, растворители могут отравить грунтовые воды на большой территории.

На заключительной стадии ЯЦТ производится захоронение высокорадиоактивных отходов. При этом возникает немало проблем, т.к. для деактивации радиоактивных отходов необходимо время, равное примерно 20 периодам полураспада (нетрудно представить сложность задачи, если вспомнить, что период полураспада, например Pu-239, которым начинены атомные боеголовки, равен 24400 лет, т.е. человечество сегодня закладывает мину замедленнго действия своему будущему).

Хранить ли РАО в течение сотен тысячелетий в соляных шахтах, в герметичных (до поры, до времени) емкостях глубоко под землей или на дне океана, просто сбрасывать в море или отправлять в космос? Вопросы захоронения отходов в целом решаются правительствами разных стран по-разному. В этой связи необходимо отметить тенденцию роста ввоза импортных грязных отходов в Россию. По оценке "Гринспис", в период с 1967 по 1993 г. более 90 иностранных фирм предприняли 96 попыток экспортировать 34 млн. т опасных отходов на территорию России. В 1991-м году было сделано 6 попыток продаж опасных отходов, в 1992 - 27 и в 1993 - уже 31 попытка. В основном предложения исходили из Германии - 28 млн. т, США, Австрии, Италии, Бельгии, Канады, Финляндии и др. Среди предложенных отходов 10 млн. т шлака и пепла мусоросжигательных заводов, отфильтрованная пыль, пестициды, химикаты, пластиковые, радиоактивные и другие отходы. Более 4000 т отходов благополучно было доставлено и размещено на российской территории, в том числе радиоактивные и ртутные отходы. Безусловно, эти далеко не полные данные – лишь малая часть того, что происходит на самом деле.

На территории России для захоронения РАО имеются 15 полигонов, которые являются источниками потенциальной радиационной опасности. Томск-7, например, зарывает контейнеры в землю на глубину 100 – 200 м, закачивает жидкие отходы в геологические пласты - при этом не исключена вероятность попадания радиоактивных веществ в водносные пласты, кое-что отправляет и в реку Томь.

Достаточно надежных способов захоронения РАО пока еще не разработано. Во многих странах ведутся исследования по отверждению отходов с целью их последующего захоронения в геологически стабильных районах на суше, на дне океана или в расположенных под ним пластах. Предполагается, что захороненные таким образом РАО не будут источником облучения населения в обозримом будущем. Делаются попытки предсказать судьбу захороненных радиоактивных материалов. Предварительные оптимистические оценки показали, что заметное количество этих радиоактивных веществ достигнет биосферы через 105 - 106 лет.




Дата добавления: 2015-05-05; просмотров: 15 | Поможем написать вашу работу | Нарушение авторских прав

<== предыдущая лекция | следующая лекция ==>
Радиоэкология и ОС| Травмы позвоночника и спинного мозга

lektsii.net - Лекции.Нет - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав