Читайте также:
|
|
Коэффициент корелляции меняется в пределах: от -1 до 1
Коэффициент корелляции равный 1 означает, что: -существует функциональная зависимость.
Коэффициент корреляции используется для: определения тесноты связи между случайными величинами X и Y;
Коэффициент корреляции рассчитывается для измерения степени линейной взаимосвязи между двумя случайными переменными.
Коэффициент линейной корреляции — показатель тесноты стохастической связи между фактором и результатом в случае линейной регрессии.
Коэффициент регрессии — коэффициент при факторной переменной в модели линейной регрессии.
Коэффициент регрессии b показывает: на сколько единиц увеличивается y, если x увеличивается на 1.
Коэффициент регрессии изменяется в пределах: применяется любое значение; от 0 до 1; от -1 до 1;
Коэффициент эластичности измеряется в: неизмеримая величина.
Критерий Дарвина-Чотсона применяется для: - отбора факторов в модель; или - определения автокорреляции в остатках
Критерий Стьюдента — проверка значимости отдельных коэффициентов регрессии и значимости коэффициента корреляции.
Критерий Фишера показывает статистическую значимость модели в целом на основе совокупной достоверности всех ее коэффициентов;
Лаговые переменные: - это переменные, относящиеся к предыдущим моментам времени; или -это значения зависим. перемен. за предшествующий период времени.
Лаговые переменные это значение зависимых переменных за предшествующий период времени
Модель в целом статистически значима, если Fрасч > Fтабл.
Модель идентифицирована, если: - число параметров структурной модели равно числу параметров приведён. формы модели.
Модель неидентифицирована, если: - число приведён. коэф. больше числа структурных коэф.
Модель сверхидентифицирована, если: число приведён. коэф. меньше числа структурных коэф
Мультиколлениарность возникает, когда: ошибочное включение в уравнение 2х или более линейно зависимых переменных; 2. две или более объясняющие переменные, в нормальной ситуации слабо коррелированные, становятся в конкретных условиях выборки сильно коррелированными;. в модель включается переменная, сильно коррелирующая с зависимой переменной.
Мультипликативная модель временного ряда имеет вид: - Y=T*S*E
Мультипликативная модель временного ряда строится, если: амплитуда сезонных колебаний возрастает или уменьшается
На основе поквартальных данных...значения 7-1 квартал, 9-2квартал и 11-3квартал...-5
Неправильный выбор функциональной формы или объясняющих переменных называется о шибками спецификации
Несмещённость оценки параметра регрессии, полученной по МНК, означает: - что она характеризуется наименьшей дисперсией.
Одной из проблем которая может возникнуть в многофакторной регрессии и никогда не бывает в парной регрессии, является корреляция между независимыми переменными
От чего зависит количество точек, исключаемых из временного ряда в результате сглаживания: от применяемого метода сглаживания.
Отметьте основные виды ошибок спецификации: отбрасывание значимой переменной; добавление незначимой переменной;
Оценки коэффициентов парной регрессии является несмещённым, если: математические ожидания остатков =0.
Оценки параметров парной линейной регрессии находятся по формуле b= Cov(x;y)/Var(x);a=y¯ bx¯
Оценки параметров регрессии являются несмещенными, если Математическое ожидание остатков равно 0
Оценки параметров регрессии являются состоятельными, если: -увеличивается точность оценки при n, т. е. при увеличении n вероятность оценки от истинного значения параметра стремится к 0.
Оценки парной регрессии явл. эффективными, если: оценка обладают наименьшей дисперсией по сравнению с другими оценками
При наличии гетероскедастичности следует применять: - обобщённый МНК
При проверке значимости одновременно всех параметров используется: -F-тест.
При проверке значимости одновременно всех параметров регрессии используется: F-тест.
Применим ли метод наименьших квадратов для расчетов параметров показательной зависимости применим после ее приведения
Применим ли метод наименьших квадратов(МНК) для расчёта параметров нелинейных моделей? применим после её специального приведения к линейному виду
С помощью какого критерия оценивается значимость коэффициента регрессии T стьюдента
С увеличением числа объясняющих переменных скоррестированный коэффициент детерминации: - увеличивается.
Связь между индексом множественной детерминации R² и скорректированным индексом множественной детерминации Ȓ² есть
Скорректиров. коэф. детерминации: - больше обычного коэф. детерминации
Стандартизованный коэффициент уравнения регрессии Ƀk показывает на сколько % изменится результирующий показатель у при изменении хi на 1%при неизмененном среднем уровне других факторов
Стандартный коэффициент уравнения регрессии: показывает на сколько 1 изменится y при изменении фактора xk на 1 при сохранении др.
Суть коэф. детерминации r2xy состоит в следующем: -характеризует долю дисперсии результативного признака y объясняем. регресс., в общей дисперсии результативного признака.
Табличное значение критерия Стьюдента зависит от уровня доверительной вероятности и от числа включённых факторов и от длины исходного ряда.(от принятого уровня значимости и от числа степеней свободы (n - m -1))
Табличные значения Фишера (F) зависят от доверительной вероятности и от числа включённых факторов и от длины исходного ряда (от доверительной вероятности p и числа степеней свободы дисперсий f1 и f2)..
Уравнение в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, идентифицируемо если D+1=H
Уравнение в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, НЕидентифицируемо если D+1<H
Уравнение в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, сверхидентифицируемо если D+1>H
Уравнение идентифицировано, если: - D+1=H
Уравнение неидентифицировано, если: - D+1<H
Уравнение сверхидентифицировано, если: - D+1>H
Фиктивные переменные - это: атрибутивные признаки (например, как профессия, пол, образование), которым придали цифровые метки;
Формула t= rxy….используется для п роверки существенности коэффициента корреляции
Частный F-критерий: - оценивает значимость уравнения регрессии в целом
Число степеней свободы для факторной суммы квадратов в линейной модели множественной регрессии равно: m;
Что показывает коэффициент наклона - на сколько единиц изменится у, если х изменился на единицу,
Что показывает коэффициент. абсолютного роста на сколько единиц изменится у, если х изменился на единицу
Экзогенная переменная – это независимая переменная или фактор-Х.
Экзогенные переменные — это переменные, которые определяются вне системы и являются независимыми
Экзогенные переменные – это предопределенные переменные, влияющие на зависимые переменные (Эндогенные переменные), но не зависящие от них, обозначаются через х
Эластичность измеряется единица измерения фактора…показателя
Эластичность показывает на сколько % изменится редуктивный показатель y при изменении на 1% фактора xk.
Эндогенные переменные - это: зависимые переменные, число которых равно числу уравнений в системе и которые обозначаются через у
Дата добавления: 2015-04-11; просмотров: 104 | Поможем написать вашу работу | Нарушение авторских прав |