Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Билет 10.Направление выпуклости и точки перегиба графика функции.

Читайте также:
  1. B. Графика режимiн қолдануда
  2. Quot;Уже 2 дня прошло, а от нее даже весточки. Вот Анара вся в…" – опустила голову и закрыла глаза.
  3. Антитела, их структура, свойства, функции. Нормальные показатели иммуноглобулинов сыворотки крови человека.
  4. Апериодическое движение точки
  5. Аспектные анализы уроков с точки зрения его развивающих и воспитательных возможностей.
  6. Билет 47. Бесконечно-малые и бесконечно-большие функции. Сравнение функций. Эквивалентные функции
  7. Билет 48 Политическая система общества. Государство, его природа и функции.
  8. Билет2 Функциональная схема компьютера. Основные устройства компьютера и их функции.
  9. БИТОЧКИ, ЗАПЕЧЕННЫЕ ПОД СМЕТАННЫМ СОУСОМ
Помощь в написании учебных работ
1500+ квалифицированных специалистов готовы вам помочь

Пусть ф-ция f(x) определена и диф-ма на интер.(a,b). Тогда в кажд.точке (a,b) можно построить касс-ую к графику ф-ции f(x). Опр.f(x) (a,b)имеет выпуклость, направен.вниз [вверх], если график f(x)лежит не ниже [не выше] люб.касат.,проведенной к точке из интер.(a,b). Теорема: пусть на интервале (a,b) f(x) имеет конечную 2ю произвдную (f”(x) ), тогда если f”(x) 0[f” ] (a,b), то на данном интер-ле f(x) имеет выпуклость, направлен вниз[вверх].Опр. т(x0 f(x0)) наз т.перегиба графика ф-ции f(x),если такая U (x0), что в дан.окр по обе стороны от т х0, графикf(x) имеет разное напр-е выпуклости. Теорема(необход.условие т.перегиба) пусть (f(x) 2(x0))f(x) в т.х0 имеет непрерывн.2ю производную. Тогда если т (х0, f(x0)) явл. Т.перегиба, то f”=0. Теорема(достат.условие т.перегиба) Пусть f(x) имеет в нек.окр.т х0 производ. 2го порядка. Тогда если в окр.дан.точки по обе стороны от т.х0 f(x) имеет 2ю производ. Различных знаков, тогда т.х0 явл. т. перегиба.

Доверь свою работу кандидату наук!
1500+ квалифицированных специалистов готовы вам помочь



Дата добавления: 2015-04-11; просмотров: 4 | Нарушение авторских прав

1 | 2 | 3 | <== 4 ==> | 5 | 6 | 7 | 8 | 9 |


lektsii.net - Лекции.Нет - 2014-2022 год. (0.015 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав