Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Система электроснабжения промышленного предприятия

Читайте также:
  1. DSM — система классификации Американской психиатрической ассоциации
  2. ERP-система
  3. I Объективные характеристики (потребление материальных благ; продолжительность жизни; система образования; время труда; показатель преступности);
  4. III. Влияние спроса на экономическую стратегию предприятия
  5. Internet/Intranet-технологии в корпоративных информа­ционных системах.
  6. o Создать синдикат можно только после строительства предприятия на земле, которую вы купили на РДМиЗ (последнего предприятия синдиката).
  7. PDM-система
  8. PR как рационально структурированная система коммуникационного обеспечения деятельности организации
  9. V. Взаимоотношения отдела сбыта с другими подразделениями предприятия
  10. V. Узагальнення і систематизація вивченого матеріалу

Схемы электроснабжения промышленных предприятий делятся на схемы внешнего и внутреннего электроснабжения. Схемы электроснабжения выбираются из соображений надежности, экономичности и безопасности. Надежность определяется в зависимости от категории потребителей. Если в числе приемников или потребителей предприятия имеется хотя бы один, относящийся к первой категории, то количество источников питания должно быть не менее двух.

В зависимости от установленной мощности приемников электроэнергии различают объекты большой (75-100 МВт и более), средней (от 5-7 до 75 МВт) и малой (до 5 МВт) мощности. Для предприятий малой и средней мощности, как правило, применяют схемы электроснабжения с одним приемным пунктом электроэнергии (ГПП, ГРП, ТП). Если имеются потребители первой категории, то предусматривают секционирование шин приемного пункта и питание каждой секции по отдельной линии.

Наиболее дешевыми являются схемы с отделителями и короткозамыкателями.

Число секций зависит от числа подключений и принятой схемы внутризаводского распределения электроэнергии. В большинстве случаев число секций не превышает двух. Каждая секция работает раздельно и получает питание от отдельной линии или трансформатора. В нормальном режиме работы секционный аппарат (разъединитель или выключатель) отключен.

Применение секционного выключателя обеспечивает автоматическое включение резерва (АВР), что позволяет использовать такую схему для потребителей любой категории по надежности.

Внутреннее и внешнее электроснабжение потребителей электроэнергии осуществляют с помощью радиальных, магистральных и смешанных схем питания.

Радиальными называют такие схемы, в которых электроэнергию от источника питания (электростанции предприятия, энергосистемы и так далее) передают непосредственно к ПС, без ответвлений на пути для питания других потребителей.

Радиальные схемы имеют большое количество отключающей аппаратуры и питающих линий. Эти схемы применяют только для питания достаточно мощных потребителей.

Магистральными называют такие схемы, в которых электроэнергию от источника питания передают к ПС не непосредственно, а с ответвлениями на пути для питания других потребителей. Как правило магистральные схемы обеспечивают присоединение пяти-шести ПС с общей мощностью потребителей электроэнергии не менее 5000-6000 кВА. Схемы характеризуются пониженной надежностью, имеют меньшее количество отключающих аппаратов, дают возможность более рационально скомпоновать потребителей.

В практике проектирования и эксплуатации систем промышленного электроснабжения редко встречаются схемы, построенные только по радиальному или только по магистральному принципу.

Основные требования к системам электроснабжения

Система электроснабжения завода состоит из питающих, распределительных, трансформаторных и преобразовательных подстанций и связывающих их кабельных и воздушных сетей и токопроводов высокого и низкого напряжения. Система электроснабжения строится таким образом, чтобы она была надежна, удобна и безопасна в обслуживании и обеспечивала необходимое качество энергии и бесперебойность электроснабжения в нормальном и послеаварийном режимах. В то же время система электроснабжения должна быть экономичной по затратам, ежегодным расходам, потерям энергии и расходу дефицитных материалов и оборудования. Экономичность и надежность системы электроснабжения достигается путем применения взаимного резервирования сетей предприятий и объединения питания промышленных, коммунальных и сельских потребителей. При сооружении на предприятиях собственных электростанций, главных понизительных подстанций и других источников питания учитываются близлежащие внезаводские потребители электроэнергии. Особенно это необходимо в районах, недостаточно охваченных энергосистемами.

Электрические сети и подстанции органически входят в общий комплекс предприятия, как и другие производственные сооружения и коммуникации. Поэтому они должны увязываться со строительной и технологической частями.

Большой и все возрастающий удельный вес получают крупные энергоемкие предприятия черной и цветной металлургии, химии и другие, которые предъявляют высокие требования к их надежному и экономичному электроснабжению. Они характеризуются большими значениями суммарных установленных мощностей электроприемников, которые при дальнейшем развитии крупных комбинатов достигнут 1500—2000 МВт. Сильно возросли единичные мощности агрегатов.

Очень серьезные дополнительные требования к электроснабжению предъявляют электроприемники с резкопеременной циклически повторяющейся ударной нагрузкой и потребители, требующие особой бесперебойности питания при всех режимах системы электроснабжения.
В отношении требуемой надежности электроснабжения электроприемники делятся на три категории.

Для правильного решения вопросов надежности электроснабжения и степени резервирования необходимо четко определить режимы, возникающие во время аварии и в периоды, непосредственно следующие после аварии. Под аварийным режимом подразумевается кратковременный переходный режим, вызванный нарушением нормального режима работы системы электроснабжения или ее отдельных звеньев и продолжающийся до отключения поврежденного звена или элемента. Продолжительность аварийного режима определяется в основном временем действия релейной защиты, автоматики и телеуправления. Под послеаварийным режимом следует понимать режим, возникающий после отключения упомянутых поврежденных элементов системы электроснабжения, т. е. после ликвидации аварийного режима. Он гораздо более длителен, чем аварийный и продолжается до восстановления нормальных условий работы.

Систему электроснабжения в целом нужно строить таким образом, чтобы она при послеаварийном режиме обеспечивала функционирование основных производств предприятия после необходимых переключений и пересоединений. При этом используются все дополнительные источники и возможности резервирования, в том числе и те, которые в нормальном режиме нерентабельны (различные перемычки, связи на вторичных напряжениях и др.). При послеаварийном режиме допустимо частичное ограничение подаваемой мощности, возможны кратковременные перерывы питания электроприемников 3-й и частично 2-й категорий на время вышеупомянутых переключений и пересоединений, а также позволены отступления от нормальных уровней отклонений и колебаний напряжения и частоты в пределах установленных допусков. Если же невозможно полное сохранение в работе всех основных производств в течение послеаварийного периода, то нужно обеспечить хотя бы сокращенную работу предприятия с ограничением мощности или в крайнем случае поддержание производства в состоянии горячего резерва с тем, чтобы после восстановления нормального электроснабжения предприятие могло быстро возобновить свою работу по заданной производственной программе. В период послеаварийного режима элементы сети могут быть перегружены в пределах, допускаемых нормативными документами.

Надежность электроснабжения предприятий, как правило, следует повышать при приближении к источникам питания (ТЭЦ, ГПП и т. д.) и по мере увеличения мощности соответствующих звеньев системы, так как аварии в мощных звеньях приводят к более тяжелым последствиям, чем в мелких, и охватывают большую зону предприятия.
Требования, предъявляемые к электроснабжению предприятий, зависят также от потребляемой ими мощности. С этой точки зрения предприятия условно подразделены на крупные, средние и малые.

В ГОСТ приняты следующие номинальные напряжения:
в сетях до 1000 В: 36; 220/127; 380/220; 660/380 В;
в сетях выше 1000 В: (3); 6; 10; 20; 35; 110; 150; 220; 330; 500; 750 кВ.
Наивыгоднейшее для данного предприятия напряжение зависит от многих факторов, основными из которых являются мощность, потребляемая предприятием, его удаленность от источника питания и напряжение, на котором может производиться питание. Для питания промышленных предприятий применяются напряжения от 6 до 220 кВ в зависимости от упомянутых факторов. К очень крупным энергоемким предприятиям подводятся напряжения 330 и даже 500 кВ. Распределение электроэнергии на первой ступени крупных предприятий производится на напряжении внешней питающей сети 110 кВ, а иногда 220 кВ с применением глубоких вводов питающих линий 110—220 кВ. Преимущественно применяются глубокие вводы 110 кВ. Глубокие вводы 220 кВ целесообразны в тех случаях, когда это напряжение является питающим и, следовательно, не потребуется промежуточной трансформации. Если же напряжение питающей сети выше 220 кВ, т. е. 330 или 500 кВ и на границе предприятия сооружается приемная трансформаторная подстанция, то выгоднее применить глубокие вводы на напряжение 110 кВ.

Напряжение 35 кВ может применяться для средних предприятий. Рекомендуются глубокие вводы 35 кВ на территорию предприятия в виде магистралей, к которым присоединяются трансформаторы 35/0,4 кВ без применения промежуточного напряжения 6 или 10 кВ. На крупных предприятиях напряжение 35 кВ в качестве основного недостаточно и может применяться лишь для питания крупных электроприемников, с номинальным напряжением 35 кВ (сталеплавильные печи, ртутно-выпрямительные установки) или же для питания отдельных удаленных нагрузок.
Напряжение 20 кВ имеет некоторые принципиальные преимущества перед 10 и 35 кВ. Его легче применить во внутрицеховых сетях, чем напряжение 35 кВ, для этого потребуются более легкие и дешевые аппараты и кабели, чем при 35 кВ. При использовании напряжения 20 кВ снижаются годовые расходы по сравнению с применением напряжения 10 кВ за счет уменьшения потерь электроэнергии в сетях, трансформаторах и другом электрооборудовании, уменьшаются токи короткого замыкания, несколько облегчается питание отдельных удаленных потребителей как самого предприятия, так и ближайшего района. Однако несмотря на это, напряжение 20 кВ не находит применения на промышленных предприятиях, так как оно является недостаточным для современных крупных предприятий в качестве единого напряжения и на первых ступенях электроснабжения приходится применять более высокие напряжения.

Напряжения 10 (6) кВ применяются, в основном, на второй и последующих ступенях распределения энергии на крупных предприятиях и в распределительных сетях небольших и средних предприятий. На первой ступени электроснабжения крупных предприятий напряжения 10 (6) кВ целесообразны при применении токопроводов. Из сравнения напряжений 10 и 6 кВ можно сделать вывод, что для внутризаводских распределительных сетей в качестве основного в большинстве случаев целесообразно напряжение 10 кВ. При этом питание электродвигателей средней мощности, которые пока еще не изготовляются, на напряжение 10 кВ можно осуществлять при напряжении 6 кВ по одному из следующих способов:
от установленных на главной понизительной подстанции (ГПП) или подстанции глубокого ввода (ПГВ) трансформаторов с расщепленными вторичными обмотками, одна из которых имеет напряжения 10 кВ, а другая 6 кВ, если суммарная нагрузка электроприемников на напряжение 6 кВ приближается к половине мощности трансформатора;
от отдельных промежуточных подстанций 10/6 кВ в тех случаях, когда суммарная мощность двигателей 6 кВ значительна, но недостаточна для рациональной загрузки ветви 6 кВ расщепленной обмотки трансформатора и в то же время число электродвигателей велико, а их единичные мощности относительно небольшие; по схеме блока трансформатор — двигатель, если число двигателей 6 кВ невелико, мощности их значительны и они расположены обособленно друг от друга.
Применение напряжения 6 кВ может оказаться целесообразным:
при напряжении генераторов собственной ТЭЦ, равном 6 кВ, особенно в тех случаях, когда от последней питается значительная часть предприятия;
при преобладании электроприемников на напряжение 6 кВ. (в частности, электродвигателей); при поставке электродвигателей на напряжение 6 кВ комплектно с производственным оборудованием.

Напряжение 3 кВ в качестве основного напряжения распределительной сети не применяется. В ГОСТ оно сохранено только для применения на действующих электроустановках до их реконструкции.
В электроустановках до 1000 В применяется напряжение 380/220 В с питанием силовых и осветительных электроприемников от общих трансформаторов, но, как правило, от отдельных сетей.

Напряжение 220/127 В применяется очень редко на реконструируемых или расширяемых предприятиях, на которых остается много электроустановок с вышеуказанным напряжением, или же в тех случаях, когда для освещения целесообразно применение отдельных трансформаторов или специальных промежуточных трансформаторов 660/230/133 и 380/230/133 В.

В помещениях с повышенной опасностью и особо опасных для стационарного местного освещения и ручных переносных ламп обычно применяется напряжение 36 В и только при особо неблагоприятных условиях в отношении опасности поражения электрическим током (например, при работе в котлах или других металлических резервуарах) для питания ручных переносных ламп применяется напряжение не выше 12 В.

Напряжение 660 В пока применяется очень мало. Электрооборудование на это напряжение выпускается еще в очень ограниченном количестве. Наиболее целесообразно оно на тех предприятиях, на которых по условиям генплана, технологии и окружающей среды нельзя широко применить приближение цеховых трансформаторов к центрам питаемых ими нагрузок. На этих предприятиях (например, в угольных шахтах, карьерах) приходится прокладывать протяженные и разветвленные кабельные сети до 1000 В большого сечения. Напряжение 660 В может оказаться целесообразным также на предприятиях с очень большой удельной плотностью электрических нагрузок и концентрацией мощностей, например на химических, нефтехимических, шинных и т. п. предприятиях. Наиболее целесообразно напряжение 660 В в сочетании с первичным напряжением 10 кВ.

Классификация приемников электроэнергии ПП

Около 70% всей вырабатываемой ЭЭ в нашей стране потребляется ПП. Приемники электроэнергии ПП делятся на следующие группы:

1) Приемники трехфазного тока напряжением до 1000 В частотой 50 Гц

2) Приемники трехфазного тока напряжением выше 1000 В частотой 50 Гц

3) Приемники однофазного тока напряжением до 1000 В частотой 50Гц

4) Приемники, работающие с частотой отличной от 50 Гц питаемых от преобразовательных п/ст и установках.

5) Приемники постоянного тока питаемых от преобразователей п/стат.

Для правильного построения системы промышленного электроснабжения всех приемников перечисленных групп необходимо выполнять:

1) Требования ПУЭ к надежности таких приемников (1,2 и 3 категории)

2) Режимы работы (продолжительный, кратковременных, повторно-кратковременный)

3) Места расположения приемников электроэнергии, их характеристики -стационарные или передвижные.

Большинство приемников электроэнергии используют электроэнергию промышленной частоты. Установки высокой и повышенной частоты применяются для нагрева под закалку, ковку и штамповку, а также для плавки металлов.

 




Дата добавления: 2015-04-11; просмотров: 65 | Поможем написать вашу работу | Нарушение авторских прав

1 | <== 2 ==> | 3 | 4 |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.009 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав