Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Третичная и четвертичная структура белка, химические связи их стабилизирующие. Субъединицы и домены. Кооперативное взаимодействие субъединиц, значение для функционирования белков.

Читайте также:
  1. A) Множество пар (имя атрибута, значение атрибута)
  2. AND(Логическое значение 1; Логическое значение 2 ...Логическое значение 30)
  3. Cущность и общественное значение средств массовой информации
  4. D) взаимодействие предметно-логического и номинативного значений
  5. I. Значение математики в медицине
  6. I. Назначение методических рекомендаций
  7. I. СТРУКТУРА КУРСОВОЙ РАБОТЫ
  8. II. Структура
  9. II. Структура и функции управления общественными отношениями.
  10. II. Структура курсовой работы

ТРЕТИЧНАЯ СТРУКТУРА

Это трехмерная архитектура полипептидной цепи – особое взаимное расположение в пространстве спиралеобразных, складчатых и нерегулярных участков полипептидной цепи. У разных белков третичной структуры различна. В формировании третичной структуры участвуют дисульфидные связи и все слабые типы связей.

Выделяют два общих типа третичной структуры:

1) В фибриллярных белках (например, коллаген, эластин) молекулы которых имеют вытянутую форму и обычно формируют волокнистые структуры тканей, третичная структура представлена либо тройной альфа-спиралью (например, в коллагене), либо бета-складчатыми структурами.

2) В глобулярных белках, молекулы которых имеют форму шара или эллипса (латинское название: GLOBULA - шар), встречается сочетание всех трех типов структур: всегда есть нерегулярные участки, есть бета-складчатые структуры и альфа-спирали.

Обычно в глобулярных белках гидрофобные участки молекулы находятся в глубине молекулы. Соединяясь между собой, гидрофобные радикалы образуют гидрофобные кластеры (центры). Формирование гидрофобного кластера вынуждает молекулу соответствующим образом изгибаться в пространстве. Обычно в молекуле глобулярного белка бывает несколько гидрофобных кластеров в глубине молекулы. Это является проявлением двойственности свойств белковой молекулы: на поверхности молекулы - гидрофильные группировки, поэтому молекула в целом - гидрофильная, а в глубине молекулы - спрятаны гидрофобные радикалы.

ЧЕТВЕРТИЧНАЯ СТРУКТУРА

Встречается не у всех белков, а только у тех, которые состоят из двух или более полипептидных цепей. Каждая такая цепь называется СУБЪЕДИНИЦЕЙ данной молекулы (или ПРОТОМЕРОМ). Поэтому белки, обладающие четвертичной структурой, называют ОЛИГОМЕРНЫМИ белками. В состав белковой молекулы могут входить одинаковые или разные субъединицы. Например, молекула гемоглобина «А» состоит из двух субъединиц одного типа и двух субъединиц другого типа, то есть является тетрамером. Фиксируются четвертичные структуры белков всеми типами слабых связей, а иногда еще и дисульфидными связями.

Четвертичная структура встречается не у всех белков. Каждая полипептидная цепь называется СУБЪЕДИНИЦЕЙ данной молекулы (или ПРОТОМЕРОМ).

Поэтому белки, обладающие четвертичной структурой, называют ОЛИГОМЕРНЫМИ белками.

В состав белковой молекулы могут входить одинаковые или разные субъединицы

Кооперативное взаимодействие

При связывание лиганда со специфическим участком белка, происходит изменение в структуре белковой молекуле, которое в свою очередь влияет на активность другого, пространственно удаленного участка (субъединицы, домена).

Кооперативные изменения

конформации олигомерных белков составляют основу механизма регуляции функциональной активности не только гемоглобина, но и многих других белков.

Белок может изменять свою конформацию не только при взаимодействии с лигандом, но и в результате любого химического взаимодействия. Примером такого взаимодействия может служить присоединение остатка фосфорной кислоты (фосфорилирование).

3. Нативная конформация белков: функциональное значение, механизм формирования. Денатурация белка. Фолдинг. Шапероны их роль в фолдинге и ренатурации. Заболевания, связанные с нарушением фолдинга.

НАТИВНОСТЬ (Natura (лат.) – природа) - это уникальный комплекс физических, физико-химических, химических и биологических свойств белковой молекулы, который принадлежит ей, когда молекула белка находится в естественном, природном (нативном) состоянии.

Для обозначения процесса, при котором нативные свойства белка теряются, используют термин ДЕНАТУРАЦИЯ

ДЕНАТУРАЦИЯ - это лишение белка его природных, нативных свойств, сопровождающееся разрушением четвертичной (если она была), третичной, а иногда и вторичной структуры белковой молекулы, которое возникает при разрушении дисульфидных и слабых типов связей, участвующих в образовании этих структур.

Первичная структура при этом сохраняется, потому что она сформирована прочными ковалентными связями.

Разрушение первичной структуры может произойти только в результате гидролиза белковой молекулы длительным кипячением в растворе кислоты или щелочи.

ФАКТОРЫ, ВЫЗЫВАЮЩИЕ ДЕНАТУРАЦИЮ БЕЛКОВ

можно разделить на физические и химические.

Физические факторы

Высокие температуры

Ультрафиолетовое облучение

Рентгеновское и радиоактивное облучение

Ультразвук

Механическое воздействие (например, вибрация).

Химические факторы

Концентрированные кислоты и щелочи. Например, трихлоруксусная кислота (органическая), азотная кислота (неорганическая).

Соли тяжелых металлов

Органические растворители (этиловый спирт, ацетон)

Растительные алкалоиды

Другие вещества, способные нарушать слабые типы связей в молекулах белков.

Воздействие факторами денатурации применяют для стерилизации оборудования и инструментов, а также как антисептики.

Обратимость денатурации

in vitro чаще всего денатурация необратима

In vivo, в организме, возможна быстрая ренатурация. Это связано с выработкой в живом организме специфических белков, которые «узнают» структуру денатурированного белка, присоединяются к нему с помощью слабых типов связи и создают оптимальные условия для ренатурации.

Такие специфические белки известны как «белки теплового шока», «белки стресса» или шапероны.

При различных видах стресса происходит индукция синтеза таких белков:

при перегреве организма (40-440С),

при вирусных заболеваниях,

при отравлениях солями тяжелых металлов, этанолом и др. Обратимость денатурации

В пробирке (in vitro) чаще всего это – необратимый процесс. Если же денатурированный белок поместить в условия, близкие к нативным, то он может ренатурировать, но очень медленно, и такое явление характерно не для всех белков.

In vivo, в организме, возможна быстрая ренатурация. Это связано с выработкой в живом организме специфических белков, которые «узнают» структуру денатурированного белка, присоединяются к нему с помощью слабых типов связи и создают оптимальные условия для ренатурации. Такие специфические белки известны как «белки теплового шока» или «белки стресса».

 

Белки стресса

Существует несколько семейств этих белков, они отличаются по молекулярной массе.

Например, известен белок hsp 70 – heatshock protein массой 70 kDa.

Такие белки есть во всех клетках организма. Они выполняют также функцию траспорта полипептидных цепей через биологические мембраны и участвуют в формировании третичной и четвертичной структур белковых молекул. Перечисленные функции белков стресса называются шаперонными. При различных видах стресса происходит индукция синтеза таких белков: при перегреве организма (40-440С), при вирусных заболеваниях, отравлениях солями тяжелых металлов, этанолом и др.

В организме южных народов установлено повышенное содержание белков стресса, по сравнению с северной расой.

Молекула белка теплового шока состоит из двух компактных глобул, соединенных свободной цепью:

Разные белки теплового шока имеют общий план построения. Все они содержат контактные домены.

Разные белки с различными функциями могут содержать одинаковые домены. Например, различные кальций-связывающие белки имеют одинаковый для всех них домен, отвечающий за связывание Ca+2.

Роль доменной структуры заключается в том, что она предоставляет белку большие возможности для выполнения своей функции благодаря перемещениям одного домена по отношению к другому. Участки соединения двух доменов – самое слабое в структурном отношении место в молекуле таких белков. Именно здесь чаще всего происходит гидролиз связей, и белок разрушается.

 

Молекула белка теплового шока состоит из двух компактных глобул, соединенных свободной цепью.

Также при участии шаперонов происходит фолдинг белков при их синтезе, обеспечивая возможность принять белку нативную структуру.

Болезни, связанные с нарушение фолдинга белков.

Амилоидозы - отложение амилоида в тканях.

Амилоид – фибрилярные отложения плохорастворимых в воде белков (нарушение конформации).

Понятие о прионах

Белки, обладающие инфекционными свойствами (либо попадают в организм, либо образуются спонтанно)

В организме человека существует нормальный аналог этого белка (первичная структура идентична)

Происходит нарушение вторичной структуры

Прионы устойчивы к действию протеаз

Прионы образуют агрегаты, к которым присоединяются нормальные белки, в последствии у которых меняется вторичная структура

Предположительно таким образом развиваются такие заболевания, как куру и коровье бешенство

 

 

4. Физико-химические свойства белков. Белки как гидрофильные соединения. Причины гидрофильности белковых молекул. Факторы, влияющие на заряд и гидратную оболочку белков (значение рН, присутствие электролитов в растворе).

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БЕЛКОВ. РАСТВОРИМОСТЬ БЕЛКОВ В ВОДЕ.

Большинство белков гидрофильны. Однако белковые молекулы имеют очень большие размеры, поэтому белки не могут образовывать истинных растворов, а только коллоидные. Внешнее проявление этого - это эффект Тиндаля (или конус Тиндаля). Эффект Тиндаля вызывается рассеянием тонкого пучка света при прохождении через белковый раствор. Несмотря на большую величину, многие белковые молекулы не осаждаются в водных растворах. Осаждению белковых молекул препятствуют факторы стабилизации белкового раствора.

ФАКТОРЫ СТАБИЛИЗАЦИИ БЕЛКА В РАСТВОРЕ.

ГИДРАТНАЯ ОБОЛОЧКА - это слой молекул воды, определенным образом ориентированных на поверхности белковой молекулы. Поверхность большинства белковых молекул заряжена отрицательно, и диполи молекул воды притягиваются к ней своими положительно заряженными полюсами (смотрите рисунок).

Чем больше гидрофильных свойств у белковой молекулы, чем больше в ее составе и на ее поверхности аминокислот с полярными (гидрофильными) радикалами, тем сильнее выражена и прочнее удерживается гидратная оболочка и тем больше в ней слоев. Вода гидратной оболочки обладает особыми свойствами: она не является свободной, а связана с белковой молекулой. Это - “связанная” вода. Она принадлежит белку, и поэтому имеет особые свойства.

Свойства воды гидратной оболочки

а) Температура кипения выше 1000С.

б) Температура замерзания ниже 0ОС.

в) В воде гидратной оболочки не растворяются различные соли и другие гидрофильные вещества.

г) Окружая каждую молекулу белка, гидратная оболочка не дает этим белковым молекулам сблизиться, соединиться и выпасть в осадок.

2) ЗАРЯД БЕЛКОВОЙ МОЛЕКУЛЫ. Поверхность большинства белковых молекул заряжена потому, что в каждой молекуле белка есть свободные заряженные СОО- и NH3+ группы. Изоэлектрическая точка (ИЭТ) большинства белков организма находится в слабокислой среде. Это означает, что у таких белков количество кислотных (СООН) групп больше количества основных групп (NH3). рН плазмы крови около 7,36 - это выше ИЭТ большинства белков, поэтому в плазме крови белки имеют отрицательный заряд.

молекулы, соотношению полярных и неполярных групп на поверхности нативной молекулы белка, растворимости белков, а также степени устойчивости к воздействию денатурирующих агентов.

/. Различия белков по форме молекул

Как уже говорилось выше, по форме молекул белки делят на глобулярные и фибриллярные. Глобулярные белки имеют более компактную структуру, их гидрофобные радикалы в большинстве своём спрятаны в гидрофобное ядро, и они значительно лучше растворимы в жидкостях организма, чем фибриллярные белки (исключение составляют мембранные белки).

2. Различия белков по молекулярной массе

Белки — высокомолекулярные соединения, но могут сильно отличаться по молекулярной массе, которая колеблется от 6000 до 1 000 000 Д и выше. Молекулярная масса белка зависит от количества аминокислотных остатков в полипептидной цепи, а для олигомерных белков — и от количества входящих в него протомеров (или субъединиц).

3. Суммарный заряд белков

Белки имеют в своём составе радикалы лизина, аргинина, гистидина, глутаминовой и аспа-рагиновой кислот, содержащие функциональные группы, способные к ионизации (ионогенные группы). Кроме того, на N- и С-концах полипептидных цепей имеются ос-амино- и а-карбок-сильная группы, также способные к ионизации. Суммарный заряд белковой молекулы зависит от соотношения ионизированных анионных радикалов Глу и Асп и катионных радикалов Лиз, Apr и Гис.

Степень ионизации функциональных групп этих радикалов зависит от рН среды. При рН раствора около 7 все ионогенные группы белка находятся в ионизированном состоянии. В кислой среде увеличение концентрации протонов (Н*) приводит к подавлению диссоциации карбоксильных групп и уменьшению отрицательного заряда белков: -СОО- + Н* -> -СООН. В щелочной среде связывание избытка ОН" с протонами, образующимися при диссоциации NH3* с образованием вод ы, приводит к уменьшению положительного заряда белков: -NH/+OH-->-NH2 + Н20.

Значение рН, при котором белок приобре тает суммарный нулевой заряд, называют "изо электрическая точка» и обозначают как pН изоэлектрической точке количество положи тельно и отрицательно заряженных групп белка ка одинаково, т.е. белок находится в изоэло! рическом состоянии.

Так как большинство белков в клетке и«ет в своем составе больше анионогенных гр«(-СОО~), то изоэлектрическая точка этих ба ков лежит в слабокислой среде. Изоэлектри ческая точка белков, в составе которых пш обладают катионогенные группы, находит! в щелочной среде. Наиболее яркий пример в ких внутриклеточных белков, содержашЛ мною аргинина и лизина. — гистоны, вход» шие в состав хроматина.

Белки, имеющие суммарный положится ный или отрицательный заряд, лучше растви римы, чем белки, находящиеся в изоэлектри ческой точке. Суммарный заряд увеличивая количество диполей воды, способных связи ваться с белковой молекулой, и препятств>в контакту одноимённо заряженных молекул. I результате растворимость белков увеличив» ется. Заряженные белки могут двигаться ■ электрическом поле: анионные белки, имею! щие отрицательный заряд, будут двигаться ■ положительно заряженному аноду (+), а ка-тионные белки — к отрицательно заряженному катоду (—). Белки, находящиеся в изоэлек-трическом состоянии, не перемещаются I электрическом поле.

4. Соотношение полярных и неполярных групп на поверхности нашивных молекул белков

На поверхности большинства внутриклеточных белков преобладают полярные радикалы.) однако соотношение полярных и неполярных групп отлично для разных индивидуальных белков. Так, протомеры олигомерных белков в области контактов друг с другом часто содержат гидрофобные радикалы. Поверхности белков, функционирующих в составе мембран или прикрепляющиеся к ним в процессе функционирования, также обогащены гидрофобными радикалами. Такие белки лучше растворимы в липидах, чем в воде.

 

Вопрос 5.Методы разделения и очистки белков. Высаливание, диализ, электрофорез, хроматография. Основные методы количественного определения белка в растворах (фотометрия, иммунохимия).

Методы выделения и очистки белков

Получение индивидуальных белков из биосинческого материала (тканей, органов, кле-точных культур) требует проведения последовательных операций, включающих:

• дробление биологического материала и разрушение клеточных мембран;

• фракционирование органелл, содержащих те или иные белки;

(■ экстракцию белков (перевод их в растворённое состояние);

• разделение смеси белков на индивидуальные белки.

Методы разрушения тканей ж экстракции белков

Для разрушения биологического материала используют методы: гомогенизации ткани, ме-год попеременного замораживания и оттаивания, а также обработку клеток ультразвуком.

Гомогенизация биологического материала

Ткань, находящуюся в буферном растворе с определённым значением рН и концентрацией солей, помещают в стеклянный сосуд (гомогенизатор) с пестиком. Вращающийся пестик измельчает я растирает ткань о притёртые стенки сосуда.

Метод замораживания и оттаивания ткани

В результате попеременного замораживания и оттаивания образующиеся кристаллы льда разрушают оболочки клеток.

После разрушения ткани нерастворимые части осаждают центрифугированием. Последующее центрифугирование гомогената с разной скоростью позволяет получить отдельные фракции, содержащие клеточные ядра, митохондрии и другие органеллы, а также надосадочную жидкость, в которой находятся растворимые белки цитозоля клетки. Искомый белок будет содержаться в одной из этих фракций.

Экстракция белков, связанных с мембранами, и разрушение олигомерных белков на прото-меры

Если искомый белок прочно связан с какими-либо структурами клетки, его необходимо перевести в раствор. Так, для разрушения гидрофобных взаимодействий между белками и липидами мембран в раствор добавляют детергенты; чаще всего используют тритон Х-100 или додецилсульфат натрия.

Механизм действия детергентов описан в разделе «Денатурация белков» (см. рис. 1-15). При действии детергентов обычно разрушаются и гидрофобные взаимодействия между протоме-рами в олигомерных белках.

Удаление из раствора небелковых веществ

Нуклеиновые кислоты, липиды и другие небелковые вещества можно удалить из раствора, используя их особенные физико-химические свойства. Так, липиды легко удаляются из раствора добавлением органических растворителей, например ацетона. Однако воздействие должно быть кратковременным, так как ацетон вызывает денатурацию некоторых белков. Нуклеиновые кислоты осаждают добавлением в раствор стрептомицина.

2. Методы очистки белков

Наиболее трудоёмкий этап получения индивидуальных белков — их очистка от других белков, находящихся в растворе, полученном из данной ткани. Часто изучаемый белок присутствует в небольших количествах, составляющих доли процента от всех белков раствора.

Так как белки обладают конформационной лабильностью, при работе с белками следует избегать денатурирующих воздействий, поэтому выделение и очистка белков происходят при низких температурах. На первых стадиях очистки белков целесообразно использовать методы, учитывающие какую-либо характерную особенность данного белка, например термостабильность или устойчивость в кислых растворах. Первыми методами очистки необходимо удалить из раствора основную массу балластных белков, которые значительно отличаются от выделяемого белка физико-химическими свойствами. Впоследствии применяют всё более тонкие методы очистки белка.

Очистка белков избирательной денатурацией

Большинство белков денатурирует и выпадает в осадок уже при кратковременном нагревании раствора до 50-70 "С или подкисле-нии раствора до рН 5. Если выделяемый белок выдерживает эти условия, то с помощью избирательной денатурации можно удалить большую часть посторонних белков, отфильтровав выпавшие в осадок белки, или осадить их центрифугированием.

'•' Высаливание

Метод очистки белков, основанный на различиях в их растворимости при разной концентрации соли в растворе. Соли щелочных и щё-лочно-земельных металлов вызывают обратимое осаждение белков, т.е. после их удаления белки вновь приобретают способность растворяться, сохраняя при этом свои нативные свойства.

Чаще всего для разделения белков методом высаливания используют разные концентрации солей сульфата аммония — (NH4)2S04. Чем выше растворимость белка, тем большая концентрация соли необходима для его высаливания.

Гель-фильтрация, или метод молекулярных сит

Для разделения белков часто используют хро-матографические методы, основанные на распределении веществ между двумя фазами, одна из которых подвижная, а другая неподвижная. В основу хроматографических методов положены разные принципы: гель-фильтрации, ионного обмена, адсорбции, биологического сродства.

Метод разделения белков с помощью гель-фильтрационной хроматографии основан на том, что вещества, отличающиеся молекулярной массой, по-разному распределяются между неподвижной и подвижной фазами. Хром. колонка заполняется гранула пористого вещества.В стрктуре полисахарида образуются полур. связи и формируются гранулы через которые легко проходят вода и низкомолекулярные вещества. В зависимости от условий можно формировать гранулы с разной величиной «пор».Неподвижная фаза — жидкость внутри гранул, в которую способны проникать низкомолекулярные вещества и белки с небольшой молекулярной массой. Смесь белков, нанесения А на хроматографическую колонку, вымывая (элюируют), пропуская через колонку растворитель. Вместе с фронтом растворителя движутся и самые крупные молекулы.

Более мелкие молекулы диффундируют внутри гранул и на некоторое время попадают в неподвижную фазу, в результате чего движение задерживается. Величина пор опрелЯ ляет размер молекул, способных проникали внутрь гранул

Так как гелевая структура сефадекса легко лея формируется под давлением, гели стали заменять более жёсткими матрицами (сефактил, той-1 оперл), представляющими сферические грануян с разными размерами пор. Выбор размеров пор! в гранулах зависит от целей хроматографии (о других хроматографических методах будет сказано ниже).

Ультрацентрифугирование

Метод разделения также основан на различии в молекулярных массах белков. Скорость седиментации веществ в процессе вращения в ультрацентрифуге, где центробежное ускорение достигает 100 000-500 000 g, пропорционально их молекулярной массе. На поверхность буферного раствора, помещённого в кювету, наносят тонкий слой смеси белков. Кювету помешают в ротор ультрацентрифуги. При вращении ротора в течение 10-12 ч более крупные молекулы (с большей молекулярной массой) оседают в буферном растворе с большей скоростью. В результате в кювете происходит расслоение смеси белков на отдельные фракции с разной молекулярной массой (рис. 1-56). После расслоения белковых фракций дно кюветы прокалывают I иглой и по каплям собирают содержимое не- ' большими порциями в пробирки. 'Электрофорез белков

Метод основан на том, что при определениями -значении рН и ионной силы раствора бел-

ки двигаются в электрическом поле со скоростью, пропорциональной их суммарному заряду. Белки, имеющие суммарный отрицательный заряд, двигаются к аноду (+), а положительно заряженные белки — к катоду (—).

Электрофорез проводят на различных носителях: бумаге, крахмальном геле, полиакрила-мидном геле и др. В отличие от электрофореза на бумаге, где скорость движения белков пропорциональна только их суммарному заряду, в полиакриламидном геле скорость движения белков пропорциональна их молекулярным массам.

Разрешающая способность электрофореза в полиакриламидном геле выше, чем на бумаге. Так, при электрофорезе белков сыворотки крови человека на бумаге обнаруживают только 5 главных фракций: альбумины, а,-глобулины, с^-глобули-ны, Р-глобулины и у-глобулины.Электрофорез тех же белков в полиакриламидном геле позволяет получить до 18 различных фракций. Для обнаружения белковых фракций полоски бумаги или столбики геля обрабатывают красителем (чаще всего бромфеноловым синим или амидовым чёрным). Окрашенный комплекс белков с красителем выявляет расположение различных фракций на носителе.

- Ионообменная хроматография

Так же как и электрофорез, метод основан на разделении белков, различающихся суммарным зарядом при определённых значениях рН и ионной силы раствора. При пропускании раствора белков через хроматографическую колонку, заполненную твёрдым пористым заряженным материалом, часть белков задерживается на нём в результате электростатических взаимодействий.

В качестве неподвижной фазы используют ионообменники — полимерные органические вещества, содержащие заряженные функциональные группы.

Различают положительно заряженные анио-нообменники, среди которых наиболее часто используют диэтиламиноэтилцеллюлозу (ДЭАЭ-целлюлозу), содержащую катионные группы, и отрицательно заряженные катионообменники, например карбоксиметилцеллюлозу (КМ-цел-люлозу), содержащую анионные группы.

+,сн2-сн3

-0-CH2-CH2-N4 "0-СН2-СОО"

Н СН2-СН3

Диэтиламинэтилцеллюлоза Карбоксиметилцеллюлоза

Выбор ионообменника опреДСЛЯОТОЯ шридом выделяемого белка. Так, дли выделения ОТрИШ

тельно заряженного белка используют анионооб-менник. При пропускании раствора белка через колонку прочность связывания белка с анионо-обменником зависит от количества отрицательно заряженных карбоксильных групп в молекуле. Белки, адсорбированные на анионообменнике. можно смыть (элюировать) буферными растворами с различной концентрацией соли, чаще всего NaCI, и разными значениями рН. Ионы хлора связываются с положительно заряженными функциональными группами анионообменника и I вытесняют карбоксильные группы белков. При низких концентрациях соли элюируются белки, слабо связанные с анионообменником. Постелен- I ное увеличение концентрации соли или изменение рН, что меняет заряд белковой молекулы, при водит к выделению белковых фракций, в одной из которых находится искомый белок. \/ Аффинная хроматография, или хроматография по сродству

Это наиболее специфичный метод выделения индивидуальных белков, основанный на избирательном взаимодействии белков с лигандами, прикреплёнными (иммобилизированными) к твёрдому носителю. В качестве лиганда может быть использован субстрат или кофермент, если выделяют какой-либо фермент, антигены для выделения антител и т.д. Через колонку, заполненную иммобилизованным лигандом, пропускают раствор, содержащий смесь белков. К ли-ганду присоединяется только белок, специфично взаимодействующий с ним; все остальные белки выходят с элюатом (рис. 1-58). Белок, адсорбированный на колонке, можно снять, промыв её раствором с изменённым значением рН или изменённой ионной силой. В некоторых случаях используют раствор детергента, разрывающий гидрофобные связи между белком и лигандом.

Аффинная хроматография отличается высокой избирательностью и помогает очистить выделяемый белок в тысячи раз.

 

вопрос 6. биологическая роль ферментов.

ускоряет реакции в клетках,ферменты катализируют 2тыс-3тыс реакций обмена,есть так же вовлеченные в передачу сигнала,процессе дыхания,мышечного сокращения,свертываемость крови,транспорт веществ,обезвреживание токсичных и чужеродных

соединений,нейротрансмиссия.

структурно-функциональная организация.активный центр фермента,его участки

фермент-органическое соединение белковой природы,выполняющая роль катализатора.

активный центр-участок,расположенный в узком гидрофобном углублении поверхности молекулы фермента,участвующий в катализе,на нем протекают хим.реакции.

участки:1)каталитический2)суьстратсвзывающий-этоучасток,отвечающий за специфический комплимент связывания субстрата и образования комплекса фермент-субстрат.

3)часто входит участок для связывания кофактора

Кофакторы и апоферменты, витоминные и невитоминные коферменты

Кофакторы - низкомолекулярные соединения которые требуются для активации ферментов(котолитически активный комплекс фермент, фермент - кофактор - холофермент)

Апофермент-отделение кофакторов обычно связанных и нековаленнтными связями с белком.

Коферменты - это органические вещества, предшественниками которых были витамины (НАД, НСКоА, Н4 - фалат - непрочно связанных с белком и востанавливают их исходные культуры может катализировать уже другим ферментом)

 

Вопрос 7. Различие и сходство неорганических и органических котализаторов причины зависимости активности ферментов от температуры и рН среды.

Сходство и неорганич и органич кат увеличиваю скорость реакции. Неизменяют состояние равновесия химической реакции. Повышает скорость реакции, понижая энергию активации.

Различие. Орг отличаются от неорганических высокой эфферентностью действия (скор ферментотивной реакции больше в 10 в 6 и 10 в 12 раз чем неферментативных) высокой специфичностью действия(способность выбирать определенный субстрат и катализировать специфические реакцию) мягкими условиями протекания ферментотивных реакций.(температуры 37 С и нормальное отмосферное давление, рН ближе к нейтральной. способность к регуляции)

Субстратная специфичность ферментов. Теории обясняющии специфичность ферментов.

Большенство ферментов высокоспецифичны как в природе так и в превращении субстратов. Спец к субстрату обуслоленна комплементарностью структуры субстрат связывающего центра фермента в структуре.

Специфичность - важное св-во ферментов, определяющая био значимость этих молекул.

Субстратная специфичность это способность каждого фермента взаимодействовать лишь с одним определенными субстратоми. Бывают обсалютная субстратная спец - это активный центр комплементарен только одному в живых организмах МАЛО. Пример: Уреаза катализирует гидролиз мочевины до диоксида углерода и амиака. Групповая субстратная специфичность - большенство ферментов катализируют однотипные реакции с небольшим количеством структурных похожих реакция. Стерео спец. - при наличии у субстратов несколько стерео изомеров фермент проявляет обсолютную специфичность одного из них(стерео спец к дисахарам L-аминокислотам к цис-трансизомеров к альфа и бетта гликозидным свзям)

Вопрос 8. Механизм ферментотивного катализа. Энергия активации, энерг барьеры реакции. Стадии ферментотивного катализа. Активность фермента и единицы измерения активности фермента.

Ферментативная реакция это многостадийный процесс, при этом на первой стадии устонавливается индуцированная комплементарное соответствие между ферментом и субстратом и образуется фермент-субстратный комплекс.

-"ключ -замок"-после взаимодействия субстрата (ключ) с активным центром (замок) происходит химическое превращение субстрата в продукт.

-стадии:

1сближение и ориентация субстрата относительнно активного центра фермента

2 образование фермент -субстратного комлекса в результате индуцированного соответствия

3 деформация субстрата и образ нестобильного комплекса фермент-продукт.(ЕР)

4 распад коплекса ЕР с высвобождением продктов реакции с сек центра фермента и освобождение фермента

Энергетическая активность - дополнительное кол-во кинетической энергии, необходимое молекулам вещества, чтобы они вступили в реакцию.

-Активность фермента определяется по скорости реакции, катализируемого фермента, при стандартных условия измерения(определенный буфер его концентрация, ионная сила и тмпература, рН.) в присутствии насыщающих концентрации субстрата и кофермента.

единицы измерения активности ферментов:

-Условные единицы активности - линейная зависимость скорости ферментотивной реакции от кол-ва фермента.

-1а стандартная единица активности - кол-во фермента, которое катализирует превращение 1мкМоль вещ-ва за 1-у минуту.

- удельная активность равна числу единиц активного фермента в образце, деленому на массу ферм. В этом образце.

- молекулярная активность равна числу единиц активного фер., деленому на кол-во фермента, выраженного в мк Молль.

активность зависит от: концентрации фермента, субстрата, кофактора; темпер, рН, присутствие ингибиторов.

 

9. Регуляция активности ферментов. Направления, уровни регуляции, л ^ ' биологическое значение. Механизмы регуляции: ковалентная v модификация структуры, аллостерическая регуляция.

В. Молекулярные механизмы

ФЕРМЕНТАТИВНОГО КАТАЛИЗА

МехаНИЗМЫ фермеЩТИВНОго катализа определяются ролью функциональных групп активного центра фермента в химической реакции превращения субстрата в продукт. Выделяют 2 основных механизма ферментативного катализа: кислотно-основной катализ и ковалентный катализ.

1. Кислотно-основной катализ

Концепция кислотно-основного катализа объясняет ферментативную активность участием в химической реакции кислотных групп (доноры протонов) и/или основных групп (акцепторы протонов). Кислотно-основной катализ — часто встречающееся явление. Аминокислотные остатки, входящие в состав активного центра, имеют функциональные группы, проявляющие свойства как кислот, так и оснований.

К аминокислотам, участвующим в кислотно-основном катализе, в первую очередь относят Цис, Тир, Сер, Лиз, Глу, Асп и Гис. Радикалы этих аминокислот в протоиированной форме — кислоты (доноры протона), в депротонированной — основания (акцепторы протона). Благодаря этому свойству функциональных групп активного центра ферменты становятся уникальными биологическими катализаторами, в отличие от небиологических катализаторов, способных проявлять либо кислотные, либо основные свойства.

Примером кислотно-основного катализа, I котором кофакторами являются ионы Zn2+, а ш

качестве кофермента используется молекул* NAD+, можно привести фермент алкогольдеги*] рогеназу печени, катализирующую реакции) окисления спирта (рис. 2-13): I

С2Н5ОН + NAD* -> CHj-COH + NADH + Н*. I

2. Ковалентный катализ

Ковалентный катализ основан на атаке нук-| леофильных (отрицательно заряженных) или электрофильных (положительно заряженных! групп активного центра фермента молекулами субстрата с формированием ковалентной связи между субстратом и коферментом или функциональной группой аминокислотного остатка (как правило, одной) активного центра фермента.

Действие сериновых протеаз, таких как трипсин, химотрипсин и тромбин, — пример механизма ковалентного катализа, когда ковалентная связь образуется между субстратом и аминокислотным остатком серина активного центра фермента. Термин «сериновые протеазы» связан с тем, что аминокислотный остаток серина входит в состав активного центра всех этих ферментов и участвует непосредственно в катализе. Рассмотрим механизм ковалентного катализа на примере хемомотрипсина, осуществляющего гидролиз пептидных связей при переваривании белков в двенадцатиперстной кишке (см. раздел 9). Субстратами химотрипсина служат пептиды, содержащие аминокислоты с ароматическими и циклическимиаирофобными радикалами (Фен, Тир, Три), что вызывает на участие гидрофобных сил в формировании фермент-субстратного комплекса. Механизм ковалентного катализа химотрипсина рассмотрен на рис. 2-14.

Радикалы Асп|02, Гис57 и Сер195 участвуют в акте катализа. Вследствие нуклеоофильной атаки пептидной связи субстрата происходит разрыв этой связи с образованием •ковалентно-модифицированного серина — ацил-трипсина?.

 

10. Регуляция активности ферментов. Механизмы конкурентного и неконкурентного ингибирования ферментов. Токсические вещества и лекарственные препараты как ингибиторы ферментов (примеры).

биологическая роль ферментов.

ускоряет реакции в клетках,ферменты катализируют 2тыс-3тыс реакций обмена,есть так же вовлеченные в передачу сигнала,процессе дыхания,мышечного сокращения,свертываемость крови,транспорт веществ,обезвреживание токсичных и чужеродных

соединений,нейротрансмиссия.

структурно-функциональная организация.активный центр фермента,его участки

фермент-органическое соединение белковой природы,выполняющая роль катализатора.

активный центр-участок,расположенный в узком гидрофобном углублении поверхности молекулы фермента,участвующий в катализе,на нем протекают хим.реакции.

участки:1)каталитический2)суьстратсвзывающий-этоучасток,отвечающий за специфический комплимент связывания субстрата и образования комплекса фермент-субстрат.

3)часто входит участок для связывания кофактора

Кофакторы и апоферменты, витоминные и невитоминные коферменты

Кофакторы - низкомолекулярные соединения которые требуются для активации ферментов(котолитически активный комплекс фермент, фермент - кофактор - холофермент)

Апофермент-отделение кофакторов обычно связанных и нековаленнтными связями с белком.

Коферменты - это органические вещества, предшественниками которых были витамины (НАД, НСКоА, Н4 - фалат - непрочно связанных с белком и востанавливают их исходные культуры может катализировать уже другим ферментом)

 

11. Номенклатура и классификация ферментов, связь с типом катализируемой реакции. Понятие об изоферментах, их биологическая роль. Энзимодиагностика.

А. Эшимодиагностика

Энзимодиагностика заключается в постановке диагноза заболевания (или синдрома) на основе определения активности ферментов в биологических жидкостях человека. Принципы эн-зимодиагностики основаны на следующих позициях:

• при повреждении клеток в крови или других биологических жидкостях (например, в моче) увеличивается концентрация внутриклеточных ферментов повреждённых клеток;

• количество высвобождаемого фермента достаточно для его обнаружения;

• активность ферментов в биологических жидкостях, обнаруживаемых при повреждении клеток, стабильна в течение достаточно длительного времени и отличается от нормальных значений;

• ряд ферментов имеет преимущественную или абсолютную локализацию в определённых органах (органоспецифичность);

• существуют различия во внутриклеточной локализации ряда ферментов.

Ферменты плазмы крови можно разделить на 2 группы. Первая, относительно небольшая группа ферментов активно секретируется в плазму крови определёнными органами. Например, печень синтезирует неактивные предшественники ферментов свёртывающей системы крови. Ко второй относят большую группу ферментов, высвобождающихся из клеток во время их f • Появление в эволюции различных изоформ ЛДГ обусловлено особенностями окислительного метаболизма тканей. Изоферменты ЛДГ4 и ЛДГ5 (М-типы ЛДГ) работают эффективно в анаэробных условиях, ЛДГ, ■ ЛДГ2 (Н-типы) — в аэробных, когда пируват быстро окисляется до С02 и Н20, а не восссстанавливается до молочной кислоты.

•При ряде заболеваний исследуют активность ДДГ в плазме крови. В норме активность ДДГ составляет_120^ 520 ЕД/л. П овышение активности наблюдают при острых поражениях сердца, печени, почек, а также при гемолитических анемиях. Однако это указывает на повреждение лишь мной из перечисленных тканей.

• Для постановки диагноза необходимо исследование изоформ ЛДГ в плазме крови.

В ней представлены электрофореграммы плазмы крови здорового человека, больного инфарктом миокарда и больного гепатитом. Выявление в плазме крови тканеспецифичес-ких изоформ ЛДГ используют в качестве диагностического теста повреждения данной ткани. Изоформы креатинкиназы. Креатинкиназа

(КК) катализирует реакцию образования креатинфосфата: Молекула КК — димер, состоящий из субъединиц двух типов: М (от англ. muscle — мышца) и В (от англ. brain — мозг). Из этих субъединиц образуются 3 изофермента — ВВ, MB, MM. Изофермент ВВ находится преимущественно в головном мозге, ММ — в скелетных мышцах и MB — в сердечной мышце. Изоформы КК имеют разную электрофоретическую подвижность.

Активность КК в норме не должна превышать 90 МЕ/л. Определение активности КК в плазме крови имеет диагностическое значение при инфаркте миокарда (происходит повышение уровня МВ-изоформы). Количество изоформы ММ может повышаться при травмах и повреждениях скелетных мышц. Изоформа ВВ не может проникнуть через гематоэнцефалический барьер, поэтому в крови практически не определяется даже при инсультах и диагностического значения не имеет.

3. Энзимодиагностика при инфаркте миокарда

Примерно 30% больных инфарктом миокарда имеют атипичную клиническую картину этого заболевания. Поэтому необходимо проводить дополнительные методы исследования для подтверждения повреждения сердечной мышцы.

При инфаркте миокарда наблюдают достоверные изменения в крови активности ферментов КК, ЛДГ и аспартатаминотрансферазы ACT, которые зависят от времени, прошедшего от начала развития инфаркта и от зоны тканевого повреждения., Обнаружение повышенной активности КК н плазме крови — основной энзимодиагностический критерий инфаркта миокарда. Если у пациента с загрудинными болями не обнаружено изменения в активности КК, диагноз инфаркт I миокарда маловероятен.

Дополнительным подтверждением диагноз;» инфаркта миокарда служит обнаружение активностей ферментов ACT и ЛДГ в крови больных,I Динамика изменений этих активностей также представлена на этом рисунке. Активность АС I и норме со с тавляет 5-4 0 МЕ/л. При инфаркте миокарда активность ACT и ЛДГ повышается через 4-6 ….

 

Вопрос 12.Понятие о биологическом окислении и его значении для организма.Катаболизм энергитических субстратов.

Биологическое окисление- совокупность окислительных процессов в живом организме, протекающих с обязательным участием кислорода. Синоним- ТКАНЕВОЕ ДЫХАНИЕ. Окисленние одного в-ва невозможно без восстановления другого в-ва.Часть окисл-восст. Процессов относиться к биологическому окислению.

 

Вопрос 13.Ацетил-КоА как центральный метаболит обмена в-в.Его пути образования и использования….

1) Пируват с ТДФ в составе Е1 и подвергается декарбокселированию, значит гидроксиэтил - ТДФ + СО2.

2) Дигидролипоилтрансацицилаза (Е2) катализирует перенос ат Н и ацильной группы от ТДФ на окислительную форму липоилмезиновых групп с обр ацетилтиоэфира липоевой кислоты.

3) КоА+ацетильные производные Е2, Ацетил Коа + липоильный остаток, простетическая группа Е2.

4) Дигидролипоилдегидрогеназа (Е3) катализирует перенос ат. Н от восстановл липольных групп на FAД - простетическую группу фермента Е3.

5) FAДН2 передает Н на NAД с образованием NaДН.

Вопрос 14 Регуляция ЦТК и его взаимная связь с тк дыханием.

-В большинстве тк, где главная функция общего пути катаболизма обеспечивается кл.энергией, важную роль в регуляции играет дыхательный контроль.

-Увелю скорости утилизации АТФ для совершенно различных типов работы, увеличивает к-цию АДФ, что ускоряет окисление NAДН в ЦПЭ и в итоге повышается скорость реакции катализируемых NАД - зависимой дпегидрогеназой...........

 

15.Реакции дегидрирования цикла трикарбоновых кислот: Их биологическое значение, регуляция. Взаимосвязь цикла трикарбоновых кислот с тканевым дыханием. *

Дегидрирование сукцинита

Образовавшийся на предыдущем этапе сукцинат превращается в фумарат под действием сукцинатдегидрогеназы (см. рис. 6-24). Этот фермент — флавопротеин, молекула которого содержит прочно связанный кофермент FAD.

Сукцинат дегидрогеназа прочно связана с внутренней митохондриальной мембраной. Она состоит из 2 субъединиц, одна из которых связана с FAD. Кроме того, обе субъединицы содержат железо-серные центры; одна — Fe2S2, a другая — Fe4S4. В железо-серных центрах атомы железа меняют свою валентность, участвуя в транспорте электронов.

Дегидрирование малата

В заключительной стадии цитратного цикла малат дегидрируется с образованием оксалоацетата (см. рис. 6-24). Реакцию катализирует NAD-зависимая малатдегидрогеназа, содержащаяся в матриксе митохондрий.

Равновесие малатдегидрогеназной реакции сильно сдвинуто влево. Тем не менее, в интактных клетках эта реакция идёт слева направо потому что продукт реакции, оксалоацетат активно используется в цитратсинтазной реакции.

 

вопрос 17.тканевое дыхание.локализация,химическа сущность,биологическое значение.

тканевое дыхание-окисление органических в-в в организме кислорода с образоваем воды и углекислого газа

-локализация-в митохондриях

-химическая сущность:тканевое дыхание включает:

а)отнятие водорода от субстрата(дегидрирование)

б)многоэтапный процесс переноса электронов на кислород:перенос электронов сопровождается уменьшением свободной энергии,часть этой энергии рассеивается в виде тепла,а около 40% на синтез АТФ.

Дыхательная цепь:

каждое звено специфично в отношении донора и акцептора электронов

-на 1-ом этапе дегидрогеназы катализир.отщепление водорода от различных субстратов

-если субстратом служит:альфагидрокислоты малат,изоцитрат,тригидроксибутират,водород переноситься на НАД+(образовавшийся НАД Н в дыхательной цепи окисляется НАД Н дегидрогеназой)

Если субстратом служит:сукцинат,глицерол-3-фосфат,акцептором Н служат ФАД зависимые дегидрогеназы(от НАД Н и ФАД Н2 электроны и протоны,передаються на убихинон далее через цепь цитохромов к молекулярному кислороду)

 

вопрос 18.механизм сопряжения окисления и фосфорилирования через протонный градиент.Окисление фосфорелирования АТФ-синтаза.

Окислительное фосфорилирование-синтез АТР из АДР и Н3РО4 за счет энергии, выдел из тканевого дыхания.

Протоны переносены из матрекса мембран. пространство, не могут вернутся обратно, т.к. внутр мембране непроницаема для протонов и создается протонный градиент.

Важную роль играет Ко Q - перенос электронна от комплекса 1 к 3 комплексу и протоны из матрикса в мембраного протранства. (Q- цикл.) Донор электр. для 3 востанавливает убихинон(QH2) акцептор-цитохром в итоге поступают на кислород.

Энергия электрохим. потенц используется на синтез АТФ. (Дельта МЮ Н+)

АТФ-синтеза: (Н+-АТФ-аза)-интегральный белок внутр мембр митохондрий.

2а белковых комплекса: 1-гидрофобнй, в мембране. Служит основанием, фиксирует АТФ-синтазу в мембране. Он имеет несколько субъединиц:они образую каналы по которым протоны идут в матрикс.

F2-выступает в митохондриальный матрикс.

F состоит из 6ти субъединиц. (3альфа, 3Бетта, гамма, епсел.,сигма)

альфа и бетта образуют "головку", между ними - 3и активных центра (там синтезируется АТФ)

Гамма, сигма и епселент связывают F1 c F0/

Коофицент окислительного фосфорилирования.

Субстрат т.к дых и велич. коэф окисл. фосфорилирования КОЭФ. Окисл фосф. - отношение кол-ва фосфорной кислоты (Р), использование на фосфорилирование АДФ; к ат. кислорода (О) поглащ. в процессе дыхания и для НАДН Р/o = 3, а для сукцината P/O = 2.

Механизм сопряжения окисления и фосфоршшрования через ир протонный градиент. Окислительное фосфорилированис. АТФ-

синтаза. Коэффициент окислительного фосфорилирования. Редокс-потенциал субстратов тканевого дыхания и величина коэффициента окислительного фосфорилирования.

А. Механизм сопряжения окисления и фосфорилирования

Каким же образом осуществляется сопряжение этих двух процессов? Наиболее обоснованный ответ на этот вопрос лает хемоосмотическая теория Митчелла, предложенная им в 1961 г. Основные положения были подтверждены и разработаны детально совместными усилиями многих исследователей в последующие годы.

1. Протонный градиент изоэлектрохимический потенциал

Перенос электронов по дыхательной цепи от NADH к кислороду сопровождается выа чиванием протонов из матрикса митохондрий через внутреннюю мембрану в межмембранное пространство. На эту работу затрачивается часть энергии электронов, переносимым ЦПЭ.

Б. Транспорт АТФ и АДФ через

МЕМБРАНЫ МИТОХОНДРИЙ

В большинстве эукариотических клеток синтез основного количества АТФ происходит внутри митохондрии, а основные потребители АТФ расположены вне её. С другой стороны, в матриксе митохондрий должна поддерживаться достаточная концентрация АДФ. Эти заряженные молекулы не могут самостоятельно пройти через липидный слой мембран. Внутренняя мембрана непроницаема для заряженных и гидрофильных веществ, но в ней содержится определённое количество транспортёров, избирательно переносящих подобные молекулы из цитозоля в матрикс и из матрикса в цитозоль.

В мембране есть белок АТФ/АДФ-антипор-тер, осуществляющий перенос этих метаболитов через мембрану (рис. 6-16). Молекула АДФ поступает в митохондриальный матрикс только при условии выхода молекулы АТФ из матрикса.

Движущая сила такого обмена — мембранный потенциал переноса электронов по ЦПЭ. Расчёты показывают, что на транспорт АТФ и АДФ расходуется около четверти свободной энергии протонного потенциала. Другие транспортёры тоже могут использовать энергию электрохимического градиента. Так переносится внутрь митохондрии неорганический фосфат, необходимый для синтеза АТФ. Непосредственным источником свободной энергии для транспорта Са2+ в матрикс также служит протонный потенциал, а не энергия АТФ.

 

19.свободное окисление.Разобщители дыхания и фосфорилирования.Термогенез.

Разобщители дыхания и фосфорилирования-некоторые химические в-ва,переносящие протоны и другие ионы из межмембранного пространства в матрикс,минуя протонные каналы АТФ-синтазы,в результате чего исчезает электрохимический потенциал и прекращается синтез АТФ.

-далее АТФ снижается,АДФ увеличивается.Скорость окисления НАД Н и ФАД Н2 возрастает.Возрастает и кол-во поглощаемого кислорода,но энергия выделяется в виде тепла и коэффициент р/о снижается.

Разобщители-липофильные в-ва,легко проходящие через липидный слой мембран(2,4-динитрофенол)

Термогенез-процесс поддерживающий тепло в организме

-термогенин -разобщающий блок

-при охлаждении стимулирует освобождение норадреналина из окончания симпатических нервов,далее топливо и регулятор -разобщение дыхания и фосфорилирования.

вопрос 20.Понятие о свободных радикалах.Активные формы кислорода (пероксид,супероксид),строение,пути образования.

супероксид,далее пероксид,далее гидроксильный радикал..

Супероксид,пероксид,гидроксильный радикал-активные окислители.

-активные формы кислорода могут отщеплять электрон от многих соединений,превращая их в новые свободные радикалы(цепные окислительные р-ии)

Образование:при переносе электрона в ЦПЭ при фукционировании QH2-дегидрогеназного комплекса(неферментативный перенос электрона с QH2 на кислород)

Строение:О2 содержит 20 неспаренных електронов с параллельными спинами(не могут образовывать термодинамически стабильную пару и располагается на разных орбиталях)

IV. ОБРАЗОВАНИЕ ТОКСИЧНЫХ ФОРМ КИСЛОРОДА В ЦПЭ

Большая часть активных форм кислорода образуется при переносе электронов в ЦПЭ, прежде всего, при функционировании (}Н2-дегидроге-назного комплекса. Это происходит в результате неферментативного переноса («утечки») электронов с QH2 на кислород (рис. 6-31).

В отличие от рассмотренного механизма на этапе переноса электронов при участии цитохромоксидазы (комплекс IV) «утечка» электронов не происходит благодаря наличию в ферменте специальных активных центров, содержащих Fe и Си и восстанавливающих 02 без освобождения промежуточных свободных радикалов.

В фагоцитирующих лейкоцитах (гранулоцитах, макрофагах и эозинофилах) в процессе

фагоцитоза усиливаются поглощение.Ативные формы кислорода образуются в результате активации NADPH-оксидазы, преимуществен кализованной на наружной стороне плазматической мембраны.

Защита организма от токсического дейсшиц ктивных форм кислорода связана с наличием во всех клетках высокоспецифичных ферментов: супероксиддисмутазы, каталазы, глутатиом. пероксидазы, а также с действием антиоксилим-тов (см. раздел 8).

21,22. Свободно-радикальное окисление
(одноэлектронное окисление)

n В результате одноэлектронного окисления образуются свободные радикалы

n Свободными радикалами называются атомы (молекулы), имеющие на внешней оболочке неспаренные электроны, что обуславливает их внутреннюю неустойчивость и постоянное стремление ликвидировать электронную неспаренность за счет взаимодействия с электронами других веществ.

Источники свободных радикалов:




Дата добавления: 2015-04-12; просмотров: 235 | Поможем написать вашу работу | Нарушение авторских прав

<== 1 ==> | 2 |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.059 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав