Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Требования к зданиям

Читайте также:
  1. I. Общие требования выписывания лекарственных средств
  2. I. Общие требования к структуре и содержанию студенческих работ
  3. I. Требования Правил устройства электроустановок
  4. I.1.4 Требования к уровню освоения дисциплины и формы текущего и промежуточного контроля
  5. IAFD не соответствует любым требованиям IPC.
  6. II . ПОРЯДОК ЗАПОЛНЕНИЯ ДОКУМЕНТОВ, СОДЕРЖАЩИХ НОРМЫ, ТРЕБОВАНИЯ И УСЛОВИЯ ИХ ВЫПОЛНЕНИЯ ПО ВИДАМ СПОРТА
  7. II. ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ КУРСОВОЙ РАБОТЫ
  8. II. Требования к охоте на копытных животных
  9. II. Требования к структуре основной общеобразовательной программы дошкольного образования
  10. II. ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К КАНДИДАТАМ

Любое здание должно отвечать следующим основным требованиям:

· Функциональная целесообразность – здание должно полностью отвечать тому процессу, для которого оно предназначено (удобство проживания, труда, отдыха и т.д.).

· Техническая целесообразность – здание должно надежно защищать людей от внешних воздействий (низких или высоких температур, осадков, ветра), быть прочным и устойчивым (выдерживать различные нагрузки), быть долговечным, сохраняя нормальные эксплуатационные качества во времени.

· Архитектурно-художественная выразительность – здание должно быть привлекательным по своему экстерьеру и интерьеру, благоприятно воздействовать на психологическое состояние и сознание людей.

· Экономическая целесообразность, предусматривающая наиболее оптимальные для данного вида здания затраты труда, средств и времени на его возведение. При этом наряду с единовременными затратами на строительство необходимо также учитывать расходы, связанные с эксплуатацией здания.

Все эти требования необходимо рассматривать в совокупности. При проектировании здания принимаемые решения должны являться результатом оптимизации и согласованности выполнения всех требований, обеспечивающих его обоснованность.

Технологическая целесообразностьсамая важная функция здания, определяющаяся решением его конструкций, которое должно учитывать все внешние воздействия, воспринимаемые зданием в целом и его отдельными элементами. Эти воздействия делят на силовые и несиловые (рис. 1).

 

6. Индустриализация, типизация, унификация и стандартизация в строительстве

Одним из важнейших путей успешного решения задач в области сельскохозяйственного строительства является широкое внедрение индустриальных методов. Сущность индустриализации строительства заключается в превращении строительного производства в механизированный поточный процесс сборки и монтажа зданий и сооружений из имеющих максимальную заводскую готовность конструкций, элементов и блоков.

Переход на индустриальные методы строительства сельскохозяйственных объектов позволяет снизить затраты труда на строительной площадке, повысить производительность труда, сократить сроки строительства, уменьшить расход материалов и снизить сметную стоимость.

Применение сборных деталей и конструкций повышает качество сельскохозяйственного строительства, увеличивает долговечность и огнестойкость зданий, позволяет резко уменьшить расходы на ремонт и содержание зданий, обеспечивает круглогодичное производство строительных работ и, следовательно, более рациональное использование рабочей силы, механизмов и транспорта.

Стандартизация, как правило, должна сопровождаться максимальной унификацией. Унификация — рациональное сокращение числа общих параметров зданий и сооружений, типоразмеров конструкций, деталей и оборудования. Унификация обеспечивает приведение к единообразию и сокращение числа основных объемно-планировочных размеров здания (высот этажей, пролетов перекрытий, размеров оконных и дверных проемов и пр.) и, следовательно, к единообразию размеров и форм конструктивных элементов заводского изготовления.

Унификация позволяет при массовом серийном изготовлении однотипных изделий и деталей снизить их стоимость и упростить монтаж. Обеспечивается также взаимозаменяемость элементов частей зданий, т. е. создается возможность замены одного элемента другим без изменения принятых по проекту размеров частей здания. Достигается возможность при использовании одного и того же проекта применять в зависимости от местных условий различные варианты конструктивных решений.

В зависимости от широты охвата и назначения объемно-планировочных и конструктивных решений проводится унификация следующих видов:

внутриплощадочная (зданий и сооружений различного вида, объединенных условиями строительства в одном комплексе, на одной строительной площадке);

видовая (зданий и сооружений одного из видов сельскохозяйственного производства: животноводства, птицеводства, хранения и переработки сельскохозяйственных продуктов и т. д.);

межвидовая (зданий и сооружений различных видов сельскохозяйственного производства);

межотраслевая (зданий и сооружений, общих по назначению для различных отраслей производства: сельскохозяйственного, промышленного, транспортного, энергетического и гидротехнического, жилищно-гражданского).

Важное значение для повышения качества сельскохозяйственного строительства имеет типизация. Под типизацией понимают разработку и отбор лучших решений отдельных конструкций, планировочных элементов и зданий в целом для многократного их использования в массовом строительстве. В настоящее время сельскохозяйственное строительство в основном ведется по типовым проектам, в которых отражаются новейшие достижения строительной техники и передовой опыт новаторов сельскохозяйственного производства. Такие проекты используются для строительства зданий определенного назначения в различных географических пунктах и нуждаются лишь в приспособлении (привязке) к местным 'условиям. Применение таких типовых проектов не только сокращает расходы на проектирование, но и обеспечивает оптимальные технико-экономические показатели строительства и эксплуатации зданий.

Основой для унификации и типизации сельскохозяйственных зданий является Единая модульная система в строительстве (ЕМС) — совокупность правил взаимного согласования размеров зданий и сооружений, а также размеров и расположения.их элементов, строительных конструкций, изделий и элементов оборудования на основе применения модулей. Положения модульной координации размеров в строительстве (МКРС) действуют во всех странах СЭВ и регламентируются специальным стандартом.

 

7. Основные положения модульной системы

Унификацию и стандартизацию в проектировании и строительстве выполняют на основе Единой мо­дульной системы (ЕМС), которая представляет собой совокупность правил взаимоувязки и согласования параметров здания с размерами строительных изделий и оборудования на базе основного модуля, рав­ного 100 мм и обозначаемого буквой М.

Все основные размеры здания, имеющие значение для унификации и стандартизации, назначают в соответствия с установленными кратными величинами основного или производных модулей.

Производные модули - укрупненные или дробные, образуются умножением величины основного моду­ля М, соответственно на целые или дробные коэф­фициенты.

Укрупненные модули 6000, 3000, 1500, 1200, 600, 300, 200 мм, обозначаемые соответственно 60М, ЗОМ, 15М, 12М, 6М, ЗМ и 2М, принимают для­ значения размеров здания по горизонтали и вертика­ли (шага, пролета и высоты этажа), а также разме­ров крупных конструктивных элементов, деталей и изделий.

Дробные модули 50, 20, 10, 5, 2и1 мм, обозначаемые соответственно 1|2 М, 1|5 М, 1|10 М| 1|20М, 1,50 М, 1|100 М, применяют для назначения относительно небольших размеров конструктивных элементов (сечение ко­лонн, балок, перемычек и т. п., толщины плитных и
листовых материалов).

Расположение и взаимосвязь объёмно - планировочных и конструктивных элементов зданий определяют с помощью пространственной системы модульных плоскостей и их линий пересечения, которые называ­ются модульными разбивочными осями (рис. 1).

Расстояние между модульными разбивочными осями, кратные основному или производному моду­лю, называют номинальными модульными размера­ми. Объемно-планировочные параметры (шаги, про­леты и высоты этажей) всегда измеряют номинальными размерами.

Для конструктивных элементов, строительных изделий и оборудования номинальный размер имеет условное значение идля них назначают конструктив­ные размеры, отличающиеся от номинальных размеров, как правило, на величину нормированных зазоров или швов. Следует заметить, что объемно-планировочные параметры, не имеют конструктивных размеров.

Натурными размерами конструктивных элементов называют фактические их размеры, которые могут отличаться от конструктивных в пределах установленных допусков.

Конструктивные и натурные размеры могут быть не кратными модулю.

 

8. Правила привязки конструктивных элементов к разбивочным осям

Использование унифицированных объемно-планировочных и конструктивных решений промышленных зданий требует соблюдения единых правил привязки конструктивных элементов к разбивочным осям. Под размером привязки понимают расстояние от разбивочной оси до грани или геометрической оси сечения конструктивного элемента.
Единые правила привязки конструкций к разбивочным осям и единство систем сопряжений их между собой обеспечивают взаимозаменяемость конструкций и позволяют исключить или свести к минимуму число доборных элементов.
В одноэтажных каркасных зданиях при привязке колонн крайних и средних рядов, наружных продольных и торцевых стен, колонн в местах устроиства температурных швов, а также в местах перепада высот между пролётами и примыкания взаимно перпендикулярных направлений пролётов используют привязки "нулевая", "250" и "500" ("600") мм.
Нулевая" привязка должна быть преимущественной, так как при ней исключается применение доборных ограждающих и несущих элементов вместах устройства температурных швов, высотных перепадов и примыкания пролетов различного направления. Ее используют при всех видах материалов каркаса в бескрановых зданиях и в зданиях с подвесными и опорными кранами, если высота от пола до низа несущих конструкций не превышает 14,4 м, а грузоподъемность кранов - 32 т.
При "нулевой" привязке внешние грани колонн крайних продольных рядов (рис. IV-!, а, б) совмещают с разбивочными (координационными) осями. При этом внутренняя поверхность продольных наружных стен и положение разбивочной оси совпадают за исключением случаев применения крупноразмерных навесных (самонесущих) конструкций стен. В этих случаях для удобства монтажа и расположения приборов крепления предусматривают зазоры 30 мм между внешними гранями колонн и внутренней поверхностью стен.
При привязке "250" и более (кратной 50 мм) внешние грани колонн смешают наружу с разбивочной оси на 250 мм (рис. IV-!, в). Такая привязка допускается в зданиях с мостовыми кранами грузоподъемностью более 32 т, при высоте пролета более 14,4 м и шаге колонн 6 м, а также в зданиях при шаге колонн 12 м и высоте пролетов более 12 м. В таких зданиях использование привязки "250" и более вызвано увеличением размеров сечения колонн и подколенников, а в ряде случаев необходимостью устройства проходов для ремонта и обслуживания подкрановых путей мостовых кранов.
В торцах зданий геометрические оси сечения основных колонн средних и крайних рядов смешают с разбивочной оси внутрь на 500 мм, а сама разбивочная ось совмещается с внутренней поверхностью торцевой стены. В случае необходимости между поверхностью стены и разбивочной осью оставляется зазор 30 мм (рис. IV-!, г). Такое правило привязки позволяет производить конструктивно оправданное размещение фахверковых колонн у торцевых стен и подстропильных и стропильных конструкций покрытия без доборных элементов.

9. Планировочные композиционные схемы гражданских зданий

Квартирные жилые дома. Малоэтажные жилые дома усадеб-

ного типа. Одно- двухквартирные и многоквартирные блоки-

рованные. Системы блокировки.

Жилые дома городского типа. Секционные жилые дома. По-

нятие о жилой секции и блок — секции. Основные типы сек-

ций. Секции со свободной и ограниченной ориентацией.

Шумозащитные, коридорные и галерейные жилые дома —

характеристика их объемно-планировочного решения, область

применения.

Типы жилых зданий, применяемых в застройке железнодо-

рожных поселков и пристанционных районов селитебной тер-

ритории города.

Квартира. Нормированная номенклатура типов квартир. Со-

став помещений квартиры, их функциональные взаимосвязи,

нормы площадей и габаритных размеров. Использование нор-

малей планировочных элементов. Квартиры поэтажные и двух-

уровневые — приемы функционального зонирования.

Специализированные виды жилых зданий. Общежития для

учащихся, малосемейных и др. — состав помещений, их функ-

циональные группы, противопожарные и санитарно-гигиени-

ческие требования. Понятие о домах-интернатах и молодежных

жилых комплексах.

 

10. Методика архитектурно-строительного проектирования

Метод архитектурного проектирования, которым пользуется архитектор-практик, в целом определяют как творческий метод архитектора. Этот метод заключается в творческом комплексном подходе к решению вопросов проектирования. Эти вопросы охватывают спектр заданий от создания образа-идеи к координации архитектурной разработки с представителями смежных профессий и реализации в строительстве.

В условиях современного роста знаний и требований к архитектурной деятельности особенной актуальности приобрели информационные методы - комплексный, проблемный, экспериментально лабораторный, оптимальный и ряд отдельных методов.

Комплексный метод проектирования, которое охватывает всю сложность архитектурного механизма, применяется как в учебном процессе, так и в проектной архитектурной практике. В процессе комплексного проектирования студент должен овладеть (а практик свободно пользоваться):

методом анализа - типологического, функционального, экономического, визуального и методом синтеза - приемами компоновки целостной системы архитектурного объекта и средствами гармонизации объекта проектирования (дому, комплексу или району города) с окружающей средой.

 

 

11. Функциональные основы проектирования зданий

Основные функции общественных зданий:

1) создание условий для разнообразных видов общения и общественного обслуживания жителей городов и сел;

2) обеспечение повседневных, периодических и эпизодических потребностей жизнедеятельности населения (досуг и отдых, личное потребление товаров и услуг, духовные потребности).

Функциональная структура общественных зданий состоит из трех основных частей: рекреационно-оздоровительной, хозяйственно-бытовой и производственной. Помещение здания должно наиболее полно отвечать тем процессам, которые в нем осуществляются. Соответствие помещения тот или иной функции достигается только тогда, когда в нем создаются оптимальные условия для человека, т. е. пространство отвечает выполняемому в помещении функционально-технологическому процессу. Совокупность всех элементов и условий, характеризующих функционально-технологические процессы, определяет пространственную организацию, размеры и формы зданий и сооружений. Для каждого вида общественных зданий характерен свой функционально-технологический процесс, на основе которого предъявляются к проектированию определенные требования. Итак, функционально-технологический процесс – это осуществление во времени и пространстве главной функции здания, при котором она разделяется на систему главных и подсобных функций на всех пространственных уровнях здания

 

12. Строительство в районах с особыми природными условиями

13. Технико-экономическая оценка проекта здания

Для экономической оценки проектных решений продолжительное время использовали приведенные затраты, сметную (или сметно-расчетную стоимость), эксплуатационные расходы, трудоемкость изготовления и монтажа, продолжительность строительства. В качестве дополнительных показателей использовали показатели расхода основных строительных материалов (металла, цемента, леса) и топливно-энергетических ресурсов. При равенстве архитектурных качеств предпочтение отдавали варианту с меньшими приведенными затратами, а при идентичности этого показателя - варианту с наименьшей стоимостью и трудоемкостью.
Приведенные затраты (Я, в руб), определяемые выажением П = К + С/Еn, где К- единовременные затраты на строительство (сметная стоимость здания), С-годовые затраты на эксплуатационное содержание здания, Ен-нормативный коэффициент экономической эффективности капитальных вложений, в основном давали объективную оценку сравниваемого варианта проектного решения. Для большинства отраслей промышленности при Е= 0,12 срок окупаемости зданий составляет около 8 лет.
Однако в условиях рыночной экономики приведенные затраты как основной показатель проекта являются недостаточными. Для сравнения различных вариантов инвестиционных проектов (инвестиции могут быть бюджетные или коммерческие) используют различные показатели, в числе которых первостепенное значение имеют чистая приведенная стоимость или интегральный доход, индексы и нормы прибыли, рентабельности и возврата инвестиций, а также срок окупаемости.
Для технико-экономической оценки, характеризующей объемно-планировочное решение промышленного здания, в качестве расчетных единиц могут быть приняты 1 м2 общей площади здания и 1 м3 объема.
Общую площадь здания определяют как сумму площадей всех этажей (надземных, включая технические, цокольного и подвальных), измеренных в пределах внутренних поверхностей наружных стен (или осей крайних колонн, где нет наружных стен), тоннелей, внутренних площадок, антресолей, всех ярусов внутренних этажерок, рамп, галерей (горизонтальной проекции) и переходов в другие здания.
В общую площадь здания не включаются: площади технического подполья высотой менее 1,8 м до низа выступающих конструкций (в котором не требуются проходы для обслуживания коммуникаций); площади над подвесными потолками, а также площади участков для обслуживания подкрановых путей, кранов, конвейеров, монорельсов и светильников.
Площадь помещений, занимающих по высоте два этажа и более в пределах многоэтажного здания (двухсветных и многоеветных), включают в обшую площадь в пределах одного этажа.
Объем здания исчисляют умножением измеренной по внешнему контуру площади поперечного сечения (включая цокольный и подвальные этажи) на длину здания в пределах внешних поверхностей торцовых стен.
Расчетные единицы площади и объема здания используют для стоимостной (стоимость 1 м2 и 1 м3), материалоемкостной (расход основных материалов на единицу площади и объема) и трудоемкостной (удельная трудоемкость) оценок здания.
Для конструктивной оценки зданий используют также такие показатели, как конструктивная площадь (сумма площадей сечения всех конструктивных элементов в плане здания), площадь наружных стен, вертикальных ограждений фонарей и др.
По показателям, характеризующим степень унификации сборных элементов, определяют уровень индустриальное™ строительства здания. Эти показатели могут быть выражены как отношение стоимости или массы сборных элементов в системе здания к стоимости или массе всего здания.
При технико-экономической оценке отдельных конструктивных элементов или их комплексов и соблюдении условий сопоставимости выявляют наиболее экономичные решения рядом показателей по расходу материалов, технологичности изготовления, затратам труда и т.п. Зги показатели могут быть на отдельную конструкцию, погонный или квадратный метр длины или площади конструкции. Однако решающим показателем эффективности той или иной конструкции здания являются приведенные затраты.




Дата добавления: 2015-04-20; просмотров: 28 | Поможем написать вашу работу | Нарушение авторских прав

1 | <== 2 ==> | 3 | 4 | 5 |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.012 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав