Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Дисперсные системы

Читайте также:
  1. EIS и DSS системы.
  2. I. Судебно-следственная практика формирования системы доказательств по уголовному делу (постановка проблемы).
  3. IV. ГОРОДСКИЕ СИСТЕМЫ ЭНЕРГОБЕСПЕЧЕНИЯ
  4. V2: Болезни сердечно-сосудистой системы
  5. V2: Патофизиология иммунной системы
  6. А) Дидактические системы.
  7. А) ухудшение продовольственного снабжения, распространение карточной системы В) недовольство крестьян аграрной политикой Хрущева
  8. А. Структура системы управления корпоративными финансами
  9. Автоматизированные информационно-вычислительные системы.
  10. Автоматизированные информационно-логические системы. Экспертные системы

Дисперсными называют системы, состоящие из вещества, раздробленного до частиц большей или меньшей величины и распределенного в другом веществе. Измельченное (раздробленное) вещество называют дисперсной фазой. Вещество, в котором распределена дисперсная фаза, называют дисперсионной средой. Например, в дисперсной системе, которой является туман, дисперсной фазой являются мельчайшие капельки воды, а дисперсионной средой служит воздух.

По степени дисперсности все системы можно разделить на грубодисперсные,коллоиднодисперсные,молекулярнодисперсные и ионнодисперсные.

а) Грубодисперсные системы (размер частиц 10ˉ5 – 10ˉ3 см) – это суспензии, эмульсии, пены.

Суспензии – гетерогенные системы, в которых частицы твердой дисперсной фазы распределены в жидкой дисперсионной среде. Это, например, взвесь крахмала в воде, раствор кофе, известковый и цементный раствор.

Эмульсии образуются двумя несмешивающимися жидкостями. Примерами эмульсий служат молоко, майонез, маргарин, эмульсия бензола в воде.

Пены состоят из ячеек заполненных газом и отделенных друг от друга жидкими или твердыми пленками. Это мыльная пена, пемза, пенопласты.

б)Коллоиднодисперсные системы (коллоидные растворы). Размер частиц дисперсной фазы составляет 10ˉ7 – 10ˉ5 см, а размер частиц дисперсионной среды 10ˉ8 см. Степень дисперсности в коллоидах выше, чем в грубодисперсных системах. Коллоидные частицы не оседают под действием силы тяжести, проходят через бумажные фильтры; но они невидимы в обычный микроскоп. Коллоидные растворы обычно называют золями. В зависимости от природы дисперсионной среды золи называют гидрозолями – дисперсионная среда – жидкость, аэрозолями – дисперсионная среда воздух.

в)Молекулярнодисперсные и ионнодисперсные системы (истинные растворы).Размеры частиц составляют 10ˉ8 см, т.е. равны размерам молекул и ионов. В таких системах гетерогенность исчезает - системы становятся гомогенными, образуются истинные растворы. К ним относятся растворы сахара, спирта, неэлектролитов, электролитов и слабых электролитов. По размерам дисперсных частиц коллоидные растворы занимают промежуточное положение между грубодисперсными системами и истинными растворами.

Основные свойства[править | править исходный текст]

· Коллоидные частицы не препятствуют прохождению света.

· В прозрачных коллоидах наблюдается рассеивание светового луча (эффект Тиндаля).

· Дисперсные частицы не выпадают в осадок — Броуновское движение поддерживает их во взвешенном состоянии, но в отличие от броуновского движения частиц, дисперсные частицы в коллоидных растворах не могут встретиться, что обусловлено одинаковым зарядом частиц.

Частицы дисперсных фаз в коллоидных системах называют мицеллами. Мицеллы являются сложными комплексами из многих тысяч атомов, молекул, ионов. Средний размер мицеллы – от 10-5 до 10-7 см. Мицеллы образуются как в процессе диспергирования фазы в данной среде, так и в процессах образования новой фазы – при конденсации из отдельных молекул и ионов.
Су­ществуют лиофильные (гидрофильные) коллоиды, в которых растворитель взаимодействует с ядрами частиц, и лиофобные (гидрофобные) коллоиды, в которых растворитель не взаимодействует с ядром частиц. Растворитель входит в состав гидрофобных частиц лишь как сольватная оболочка адсорбированных ионов или при наличии стабилизаторов (ПАВ), имеющих лиофобную и лиофильные части.
Мицеллы типичных лиофильных золей состоят из нерастворимого в данной среде ядра (представляющего собой ультрамикрокристаллическое образование), окруженного двойным электрическим слоем ионов. Один слой ионов (т. н. адсорбционный) находится на поверхности ядра, сообщая ему электрический заряд. Этот слой образуется в результате адсорбции какого-либо одного вида ионов из раствора. Эти ионы, сообщающие ядру заряд, называются потенциалопределяющими. В состав адсорбционного слоя входит также часть ионов противоположного знака – компенсирующих ионов. Основная масса этих ионов образует второй слой (слой противоионов), который вследствие теплового движения размыт (диффузный слой). Мицелла обычно окружена ориентированными молекулами растворителя – сольватной оболочкой.
Мицеллы лиофильных коллоидов представляют собой ассоциированный комплекс молекул (или ионов) ряда веществ (например, мыл), имеющих ярко выраженную полярную асимметрию. Такие молекулы обычно состоят из двух частей – длинного углеродного радикала и полярной группы. В водных растворах молекулы мыла вследствие межмолекулярных взаимодействий ориентированы так, что углеводородные цепи образуют внутреннее жидкообразное гидрофобное ядро мицеллы, а наружная поверхность ее состоит из гидратированных полярных групп (рисунок 3.3).



Рисунок 3.3 – Строение мицелл
Ионы Fe3+ (потенциалопределяющие ионы) адсорбируются на поверхности частиц осадка Fe(OH)3, заряжая их положительно; к положительно заряженной поверхности образовавшегося ядра мицеллы притягиваются ионы противоположного знака – противоионы (ионы Cl-). Часть этих ионов, составляющая адсорбционный слой, прочно удерживается у поверхности ядра за счет электростатических и адсорбционных сил. Ядро вместе с адсорбционным слоем составляет коллоидную частицу. Остальные противоионы связаны с ядром только электростатическими силами. Эти противоионы образуют диффузный слой. Наличие заряда у коллоидных частиц приводит к их отталкиванию и обеспечивает устойчивость золя. Коллоидная частица и диффузный слой образуют электроней­тральную мицеллу.

4. Оптические свойства коллоидных растворов.

1). Оптические свойства коллоидных систем. Опалесценция и флуоресценция Прохождение света через коллоидную систему вызывает три оптических эффекта: поглощение, от-ражение и рассеивание лучей; коллоидные растворы рассеивают свет.

А)Это проявляется опалесценцией в виде голубоватого матового свечения при освещении боковым светом. Опалесценция (светорассеяние) наблюдается только тогда, когда длина световой волны больше размера частицы дисперсной фазы. Если длина световой волны много меньше диаметра час-тицы, происходит отражение света, проявляющееся в мутности. Рассеянный свет имеет ту особенность, что он распространяется во всех направлениях. Интенсив-ность рассеянного света в различных направлениях различна.

Б) При пропускании параллельного пучка света через коллоидный раствор наблюдается конус рассе-янного света – эффект Тиндаля. По способности рассеивать свет можно определять концентрацию коллоидных частиц в растворе - метод нефелометрии. Светорассеивание наблюдается только тогда, когда длина световой волны больше размера частицы дисперсной фазы. Если длина световой волны много меньше диаметра частицы, происходит отражение света, проявляющиеся в мутности, замет-ной визуально. Все коллоидные растворы способны рассеивать свет (опалесцировать). Опалесценция становится особенно заметной, если через раствор пропускать пучок сходящихся лучей, поставив между источ-ником света и кюветой с раствором линзу. При этих условиях в коллоидном растворе, наблюдаемом сбоку, виден ярко светящийся конус (конус Тиндаля).

В) С опалесценцией внешне сходна, флуоресценция, характерная для истинных растворов некоторых красителей. Она заключается в том, что раствор при наблюдении в отраженном свете имеет иную окраску, чем в проходящем, и в нем можно видеть такой же конус Тиндаля, что и в типичных коллоидных системах. Однако по существу это совершенно различные явления. Опалесценция возникает в результате рассеяния света, при этом длина волны рассеянного света та же, что и падающего. Флуоресценция же представляет собой внутримолекулярное явление, заключающееся в селективном поглощении молекулой вещества светового луча и в трансформировании его в световой луч с другой, большей длиной волны. Оптические методы исследования: нефелометрия, ультрамикроскопия, турбидиметрия, электронная микроскопия. В нефелометрии измеряется интенсивность света, рассеянного дисперсной системой. Вместо измерения абсолютных значений рассеянного света на практике проводят сравнение интен-сивностей лучей, рассеянных стандартным и исследуемым золем.

 

5. Лиофильные и лиофобные системы

Лиофильные и лиофобные коллоиды, коллоидные системы, различающиеся по интенсивности молекулярного взаимодействия веществ дисперсной фазы и жидкой дисперсионной среды. В лиофильных коллоидах частицы дисперсной фазы интенсивно взаимодействуют с молекулами окружающей их жидкости. Поверхность частиц сильно сольватирована и удельная свободная поверхностная энергия (поверхностное натяжение) на границе раздела фаз чрезвычайно мала. При комнатной температуре условие возникновения лиофильных коллоидов реализуется, если межфазное (поверхностное) натяжение не превосходит нескольких сотых долей мн·м-1(дин·см-1).Лиофильные коллоиды образуются в результате самопроизвольного диспергирования крупных кусков твёрдого тела или капель жидкости на мельчайшие коллоидные частицы, или мицеллы. Лиофильные коллоиды термодинамически устойчивы и поэтому не разрушаются во времени при сохранении условий их возникновения. К лиофильным коллоидам относятся т. н. критические эмульсии, т. е. эмульсии, возникающие вблизи критической температуры смешения двух жидкостей; коллоидные дисперсии мицеллообразующих поверхностно-активных веществ (мыл, некоторых органических пигментов и красителей), водные дисперсии бентонитовых глин.

Термин "лиофильные коллоиды" можно встретить как устаревшее название растворов высокомолекулярных соединений, представляющих собой гомогенные (однофазные) системы. В настоящее время в отечественной физико-химической литературе этот термин используют только для обозначения микрогетерогенных (многофазных), т. е. коллоидно-дисперсных, систем.

В лиофобных коллоидах частицы дисперсной фазы слабо взаимодействуют с окружающей средой. Межфазное натяжение в таких системах довольно велико [не ниже нескольких десятых долей мн·м-1(дин·см-1) при комнатной температуре]. Вследствие избытка свободной поверхностной энергии они термодинамически неустойчивы, т. е. всегда сохраняют тенденцию к распаду. При распаде лиофобного коллоида происходит укрупнение коллоидных частиц (коагуляция или коалесценция), которое сопровождается уменьшением свободной энергии системы. Агрегативная устойчивость (способность противостоять укрупнению частиц) любого лиофобного коллоида носит временной характер; она обусловлена наличием стабилизатора — вещества, адсорбирующегося на поверхности частиц (капель) и препятствующего их слипанию (слиянию). Типично лиофобные коллоиды — гидро- и органозоли металлов, окисей, сульфидов, предельно высокодисперсные эмульсии (кроме критических), латексы.

 

6. Понятие адсорбции. Примеры процесса адсорбции в природе

Адсорбцией называется самопроизвольный процесс поглощения вещества на границе раздела фаз, являющийся одной из стадий поверхностного взаимодействия. Вещество, на поверхности которого происходит адсорбция, называется адсорбентом . Вещество, молекулы которого могут адсорбироваться, называют адсорбтивом, уже адсорбированное вещество — адсорбатом. Часто применяющимися адсорбентами являются древесный или костяной уголь, некоторые сорта глин, силикагель (высушенный осадок кремниевой кислоты), гидроокись алюминия и т. п.

Адсорбция находит широкое применение в разных областях науки и техники. Адсорбция на границе «твердое тело—жидкость» лежит в основе, например, гетерогенного катализа, крашения, стирки. На явлении адсорбции основаны способы очистки газов и жидкостей от различных примесей, в том числе при подготовке питьевой воды, а также воды, подаваемой на электростанции и заводы по производству стройматериалов, при осушке газов, при получении чистых веществ (например, кислорода из воздуха). В медицине адсорбционные методы используются для извлечения вредных веществ из крови (гемосорбция). Особое значение приобретает адсорбционная техника в решении экологических задач, в частности, для очистки сточных вод, выбросов электростанций и различных предприятий.

7. Классификация дисперсных систем.

Диспе́рсная систе́ма — это образования из двух или более числа фаз (тел), которые совершенно или практически не смешиваются и не реагируют друг с другом химически. Первое из веществ (дисперсная фаза) мелко распределено во втором (дисперсионная среда). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т. д.).

Обычно дисперсные системы — это коллоидные растворы, золи. К дисперсным системам относят также случай твёрдой дисперсной среды, в которой находится дисперсная фаза.

Классификация дисперсных систем[править | править исходный текст]

Наиболее общая классификация дисперсных систем основана на различии в агрегатном состоянии дисперсионной среды и дисперсной фазы. Сочетания трех видов агрегатного состояния позволяют выделить девять видов дисперсных систем. Для краткости записи их принято обозначать дробью, числитель которой указывает на дисперсную фазу, а знаменатель на дисперсионную среду, например для системы «газ в жидкости» принято обозначение Г/Ж.

Обозначение Дисперсная фаза Дисперсионная среда Название и пример
Г/Г Газообразная Газообразная Дисперсная система не образуется
Ж/Г Жидкая Газообразная Аэрозоли: туманы, облака
Т/Г Твёрдая Газообразная Аэрозоли (пыли, дымы), порошки
Г/Ж Газообразная Жидкая Газовые эмульсии и пены
Ж/Ж Жидкая Жидкая Эмульсии: нефть, крем, молоко
Т/Ж Твёрдая Жидкая Суспензии и золи: пульпа, ил, взвесь, паста
Г/Т Газообразная Твёрдая Пористые тела: поролон, пемза
Ж/Т Жидкая Твёрдая Капиллярные системы: жидкость в пористых телах, грунт,почва
Т/Т Твёрдая Твёрдая Твёрдые гетерогенные системы: сплавы, бетон, ситаллы,композиционные материалы


По кинетическим свойствам дисперсной фазы дисперсные системы можно разделить на два класса:

· Свободнодисперсные системы, у которых дисперсная фаза подвижна;

· Связнодисперсные системы, дисперсионная среда которых твердая, а частицы их дисперсной фазы связаны между собой и не могут свободно перемещаться.

В свою очередь эти системы классифицируются по степени дисперсности.

Системы с одинаковыми по размерам частицами дисперсной фазы называются монодисперсными, а с неодинаковыми по размеру частицами — полидисперсными. Как правило, окружающие нас реальные системы полидисперсны.

По размерам частиц свободнодисперсные системы подразделяют на:

Название Размер частиц, м
Ультрамикрогетерогенные 10−9…10−7
Микрогетерогенные 10−7…10−5
Грубодисперсные более 10−5

Ультрамикрогетерогенные системы также называют коллоидными или золями. В зависимости от природы дисперсионной среды, золи подразделяют на твёрдые золи, аэрозоли (золи с газообразной дисперсионной средой) и лиозоли (золи с жидкой дисперсионной средой). К микрогетерогенным системам относят суспензии, эмульсии,пены и порошки. Наиболее распространёнными грубодисперсными системами являются системы «твёрдое — газ», например, песок.

Связнодисперсные системы (пористые тела) по классификации М. М. Дубинина подразделяют на:

Название Размер частиц, нм
Микропористые менее 2
Мезопористые 2-200
Макропористые более 200

8. Получение коллоидно-дисперсных систем

Методы диспергирования осуществляются путем механического, электрического пли ультразвуковою дробления веществ до размеров коллоидных части. Все эти методы требуют затраты энергии извне.

Конденсационные методы делят на физические и химические Общим для них является процесс возникновения повои фазы п\ гем соединения молекул, ионов, атомов,

К физическим относят метол непосредственной конденсации молекул испаряющеюся вещества и метод замены растворителя. При методе замены растворителя растворитель, в котором вещество растворяется, образуя истинный раствор, заменяется дисперсионной средой, в которой это вещество нерастворимо

К химическим относят методы получения трудно растворимых веществ при различных химических реакциях (гидролиз, окисление, двойной обмен и т. д. ).

Особое место при получении коллоидных систем занимает метод пептизации: переход свежеприготовленного осадки (коллоидной степени дисперсности) а раствор. В этом случае не происходит изменения степени дисперсности частиц осадка, а только их разъединение.

Важными условиями при получении коллоидных систем являются:

1) дисперсная фаза не должна взаимодействовать с дисперсионной средой;

2) должна быть достигнута определенная степень дисперсности;

3) концентрации растворов должны быть минимальными;

4) присутствие веществ-стабилизаторов, обусловливающих устойчивость систем. Коагуляция. Коллоидные системы обладают различной устойчивостью, одни из них существуют доли минуты, другие сохраняют устойчивость годами. По самой своей природе коллоидные системы агрегативно неустойчивы. Потеря агрегативной устойчивости выражается в укрупнении частиц путем коагуляции, т.е. слипания их между собой с образованием крупных агрегатов. Далеко зашедшая коагуляция приводит к потере кинетической устойчивости, т.е. неспособности укрупнившихся коллоидных частиц равномерно распределяться по всему объему, эти частицы либо будут всплывать, либо оседать (седиментация). Внешне явление коагуляции выражается в том, что гидрозоль мутнеет, появляются видимые невооруженным глазом хлопья, постепенно система начинает, расслаивается на два слон: жидкость и рыхлый осадок. Оптические свойства коллоидных систем. Свет, проходя через дисперсную систему, может поглощаться, отражаться или рассеиваться частицами. В коллоидных системах, где размеры частиц (1 —100 им) меньше длины полуволны видимого света, наблюдается не отражение света от поверхности частиц, а дифракция — лучи света как бы огибают коллоидные частицы, рассеиваясь во всех направлениях 'За счет такого рассеивания направление .туча в системе будет заметным в виде светящейся полосы, а если на пути луча до вхождения его в коллоидную систему поставить линзу, то можно сбоку наблюдать образование конуса (конус Тиндаля).

 

9. Гидрофильные и гидрофобные системы


Дата добавления: 2015-04-20; просмотров: 23 | Нарушение авторских прав

1 | <== 2 ==> | 3 |


lektsii.net - Лекции.Нет - 2014-2020 год. (0.027 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав