Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

ОСНОВНЫЕ ПОНЯТИЯ АКСИОМАТИЧЕСКОЙ ТЕОРИИ

Читайте также:
  1. A)простые, синтетические, аналитические, основные
  2. DLL-библиотек общ.понятия.
  3. I. Исторические аспекты возникновения теории инвестиций и инвестиционного менеджмента.
  4. I. Основные богословские положения
  5. I. Основные положения
  6. I. ОСНОВНЫЕ ПОНЯТИЯ
  7. I. Основные формы исследования ППО
  8. I. Основные характеристики финансовых активов
  9. I. Точка зрения классической теории.
  10. II. Основные положения по организации практики

Основные этапы развития аксиоматического метода в науке

Формирование современного понимания существа аксиоматического метода происходило на протяжении более чем двухтысячелетней истории развития науки.

Истинное начало науки о геометрических фигурах и телах, конечно же, теряется в глубине тысячелетий. Начальное оформление первых геометрических представлений обычно связывают с древнейшими культурами Вавилона и Египта (3-2 тысячелетия до н.э.). С VII века до н.э. начинается пириод развития геометрии трудами греческих учёных. Пифагорейская школа в VI-V веках до н.э. продолжила геометрические исследования. Её основоположник Пифагор (560-470 или 580-500 г.г. до н.э.) в молодости около двадцати лет учился мудрости в Египте, ещё десяти - в Вавилоне. Несомненно, что в школе Пифагора геометрия сделала первые шаги от узкопрактических утилитарных задач, от геометрии измерения участков земли к обобщениям, абстракциям и рассуждениям.

Величайший философ античности Платон (428-348 г.г. до н.э.) создатель Академии, по-видимому, первым отчётливо поставил задачу построения всего научного знания вообще и геометрии в частности дедуктивным образом. Трактаты и учебники по геометрии появились ещё до Платона - известны руководства Гиппократа Хиосского, Демокрита, Февдия. но лишь Платон потребовал, чтобы во главу всякой отрасли знания были поставлены понятия и положения, из которых всё остальные, что к этой отрасли относятся должно вытекать кА их следствия. Но эта постановка у Платона всё же весьма расплывчата и контуры её лишь угадываются из всего его учения, построенного на полумистической базе.

Гениальный ученик Платона великий Аристотель (384-322 г.г. до н.э.), перешагнул через мистические догмы Платона, выявил его рациональные требования научного обоснования всякого знания всякой научной деятельности. Он охватил почти все достигнутые для его времени отрасли знания, стал основоположником научного метода и многих наук. Наука, по Аристотелю, представляет собой последовательность предложений, относящихся к некоторой области. Среди этих предложений имеются основные, которые настолько очевидны, что не требуют доказательств. Это - аксиомы. Остальные предложения должны быть выведены из них. Это - теоремы. Эта научная доктрина Аристотеля была принята как руководство к действию, прежде всего, математики. И когда примерно полстолетия спустя появился гениальный труд Евклида «Начала», то в его структуре явно просматривалась печать схемы Аристотеля.

Более 2000 лет «Начала» служили единственным руководством, по которому учились геометрии юноши и взрослые в странах запада и востока. Это была первая в истории человечества поистине научная книга: в ней геометрия была представлена как аксиоматическая теория, исходя из тех принципов, формулировки которых восходили к Аристотелю и Платону.

Наибольший интерес исследователей евклидовой системы обоснования геометрии на протяжении многих веков вызывал V постулат. И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними внутренние односторонние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороной с которой эта сумма меньше двух прямых. Пространственность его формулировки толкала исследователей на то, чтобы доказать его, вывести из остальных постулатов и аксиом и тем самым исключить его из числа постулатов. Такие исследования велись в элленическую эпоху (Посидоний, I в до н.э., Санкери, XVIII в., Ламберт, XVIII в.). Это была эпоха Евклида в истории обоснования геометрии, эпоха его продолжателей и усовершенствователей, период наивно-аксиоматического построения геометрии. В начале XIX века вместе с безуспешными попытками доказательства V постулата она подходит к концу. Она рождала из себя выдающееся открытие - новое понимание оснований геометрии и новый шаг в понимании сути аксиоматического метода.

11 февраля 1826 г. в заседании Физико-математического факультета Казанского университета профессор Н.И. Лобачевский (1792-1856 г.г.) сообщил об открытие: V постулат Евклида лежит в основе теории параллельных прямых. Значения открытия Лобачевского неизмеримо велико для геометрии. Во-первых, он «закрыл» проблему V постулата, стоявшую перед геометрами 2000 лет, доказав, что V постулат логически не зависит от остальных аксиом геометрии, т.е. не является их необходимым следствием. Во-вторых, V постулат потому именно не вытекает из остальных постулатов, что наряду с геометрией Евклида, в которой этот постулат верен, возможна другая «воображаемая», геометрия, в которой V постулат не выполняется. В-третьих, открытие Лобачевского дало новый взгляд на суть аксиоматического метода, который получил своё дальнейшее развитие. Аксиомы - это вовсе не самоочевидные истины. Это - утверждения о каких-то первоначальных понятиях, принимаемые без доказательств и кладущиеся в основе теории, из которых все дальнейшие утверждения теории логически выводятся. Истинно то, что может быть логически доказано (выведено) из принятых аксиом. И, в-четвёртых, открытие новой, как её обычно называют, неевклидовой геометрии положило конец существовавшеё до Лобачевского точке зрения, согласно которой евклидова геометрия представлялась единственно мыслимым учением о пространстве.

К концу 60-х годов XIX века, когда идеи Лобачевского были уяснены и признаны основной массой математиков и те приступили к их дальнейшему развитию, с новой силой встала проблема аксиоматического построения геометрии. К концу XIX и в начале XX века было опубликовано много работ на эту тему. Наибольшую популярность получило сочинение немецкого математика Д. Гильберта «Основания геометрии», вышедшие в 1899 году. В этой книге Гильберт привёл полную систему аксиом евклидовой геометрии, т.е. такой набор основных предложений, из которых все остальные утверждения геометрии могут быть доказаны логическим путём, доказал противоречивость этой системы и независимость некоторых аксиом от остальных аксиом системы. С выходом в свет этой книги вопрос о логическом обосновании геометрии фактически был закрыт. Более того, были окончательно осознаны те идеи и принципы, которые характеризуют суть аксиоматического подхода к обоснованию геометрии, а также суть аксиоматического метода вообще. Было принято, что значит построить аксиоматическую теорию и на какие вопросы при этом необходимо дать ответы. Это вопросы, связанные с непротиворечивостью, полнотой и категоричностью этой теории и независимостью её системы аксиом. Различные системы аксиом, исходящие из различных первоначальных понятий, строились как до выхода книги Гильберта (М. Пашем в 1882 году), так и после её выхода, вплоть до начала 20-х годов (Г. Вейлем в 1916 году). Этим был завершён второй этап развития аксиоматического обоснования геометрии абстрактно-аксиоматическое построение геометрии.

Геометрические исследования, начатые Лобачевским, привели к тому, что в начале XX века было сформировано фундаментальнейшее понятие современной математики - понятие (математического или геометрического) пространства как некой совокупности однородных объектов произвольной природы (точек, векторов, фигур, функций и т.п.), взаимное отношения между которыми удовлетворяют той или иной системе аксиом. Такое понимание позволило геометрическим идеям, оплодотворённым аксиоматическим методом, проникнуть во многие области математики, физики и других наук. При этом и сама геометрия стала развиваться всё шире, математика становилась всё более единой наукой, а границы её многообразных областей, в том числе и геометрии, становились всё менее чёткими. Поистине цементным раствором, соединившим прочнейшими связями основания всех областей математики, явилась в XX веке математическая логика. С её помощью был исследован сам процесс доказательства, процесс вывода теорем из аксиом. Тем самым аксиоматический метод получил дальнейшее своё развитие и достиг в определённом смысле вершины. Аксиоматические теории сами стали точными математическими объектами, названными формальными системами, и стали изучаться математическими методами, стала строиться теория также математических теорий (теория формальных систем), называемая метатеорией. Это направление было начато в работах Гильберта и получило название метода формализации и обоснования математики. В рамках метатеории геометрии были доказаны непротиворечивость, категоричность, полнота и разрешимость аксиоматической теории евклидовой геометрии, а также и геометрии Лобачевского. Можно сказать, что в XX веке состоялся третий этап развития аксиоматического метода.

Понятие аксиоматической теории

Исторический процесс развития взглядов на существо математики как науки привел к формированию фундаментальной концепции аксиоматического метода и понятия аксиоматической теории. Суть их состоит в следующем. Выбирается ряд первоначальных понятий, которые не определяются и используются без объяснения их смысла. Вместе с тем, все другие понятия, которые будут использоваться, должны быть строго определены через первоначальные неопределённые понятия и через понятия, смысл которых был определён раньше. Высказывания, определяющее таким способом значение понятия, называется определением, а само понятие, смысл которого определён, носит название определяемого понятия. Евклид сделал попытку строго определить все первоначальные понятия геометрии: точки, прямой, плоскости и т.д. Но совершенно ясно, что эти понятия должны определяться через какие-то другие, те в свою очередь, должны опираться на следующие понятия, и так далее, так что процесс бесконечен. Таким образом, первоначальные понятия аксиоматической теории не определяются.

Совершенно аналогична ситуация и с утверждениями о первоначальных и об определяемых понятиях. Невозможно доказать все истинные утверждения об этих понятиях, потому что при доказательстве нужно опираться на какие-то предыдущие утверждения, при их доказательстве, в свою очередь, - на следующие, и так без конца. Поэтому и здесь необходимо выделить некоторые утверждения и объявить их истинными. Такие утверждения, принимаемые без доказательства, называются аксиомами аксиоматической теории. Совокупность аксиом обозначается буквой. Вопрос о том, какие утверждения о первоначальных понятиях выбираются в качестве аксиом, заслуживает специального рассмотрения. Евклид в качестве пяти своих аксиом (постулатов) выбрал наиболее, на его взгляд, очевидные утверждения о точках и прямых, т.е. такие утверждения, которые многократно подтверждались практическим опытом человечества.

Итак, после того, как система аксиом аксиоматической теории выбрана, приступают к развитию самой аксиоматической теории. Для этого, исходя из выбранной системы аксиом, пользуясь правилами логического умозаключения, выводятся новые утверждения о первоначальных понятиях, а также об определяемых понятиях. Получаемые утверждения называются теоремами данной аксиоматической теории.

Можно более точно сформировать понятие теоремы аксиоматической теории и её доказательства. Доказательством утверждения С, сформулированного в терминах данной теории, называется конечная последовательность В1, В2, …, В5 высказываний теории, в которой каждое высказывание есть либо аксиома, либо оно получено из одного или более предыдущих высказываний данной последовательности по логическим правилам вывода, а последнее высказывание В5 есть утверждение С. При этом, С называется теоремой или доказуемым утверждением аксиоматической теории. Обозначение: |- С. Каждая аксиома аксиоматической теории является её теоремой доказательство аксиомы есть одноэлементная последовательность, состоящая из неё самой.

Важным является следующее обобщение понятия теоремы. Пусть Г - конечное множество высказываний некоторой аксиоматической теории. Утверждение С теории, называется выводами из Г (обозначается Г |-), если существует конечная последовательность высказываний В1, В2, …, В5, называемая выводом С из Г, каждое высказывание которой является либо аксиомой, либо высказыванием из Г, либо получено из одного или более предыдущих высказываний этой последовательности по какому-либо из правил вывода рассматриваемой теории, а последнее высказывание В5 есть утверждение С. Утверждение из множества Г называются гипотезами. В частном случае, когда Г=, вывод С из Г превращается в доказательство утверждения С, а С становится теоремой аксиоматической теории.

Итак, под аксиоматической теории, построенной на основе системы аксиом, понимается совокупность всех теорем, доказываемых, исходя из этой системы аксиом. Такую совокупность теорем обозначают Тh ().

Изложенный метод построения математической теории носит название аксиоматического или дедуктивного метода. Выбор системы аксиом есть дело условия: одно и тоже утверждение теории может быть аксиомой, если оно так выбрано, а может выступать в качестве теоремы, если выбор аксиом осуществлён по-иному. Итак, если в обыденной жизни за термином «аксиома» утвердился его изначальный смысл (в переводе с греческого «аксиома» означает «достойный признания), именно смысл самоочевидной, безусловной истины, то в математике, при построении аксиоматических теорий, аксиомы условны. Они «достойны признания» не сами по себе, не ввиду их самоочевидной истинности, а потому что на их основе строится та или иная аксиоматическая теория. При новом выборе системы аксиом прежние аксиомы становятся теоремами. Коротко говоря, аксиомы - это то, из чего выводятся теоремы, а теоремы - то, что выводится из аксиомы.

Суть аксиоматического построения математической теории состоит в том, что сначала выбирается ряд первоначальных понятий, который не определяются и используются без объяснения их смысла. Ранее, формулируется ряд первоначальных утверждений. Об этих первоначальных понятиях, которые принимаются без доказательства и которые называются аксиомами. Наконец, исходя из выбранной системы аксиом, доказывают новые утверждения о первоначальных понятиях, а также о понятиях, которые определяются в процессе развития аксиоматической теории. Эти доказываемые утверждения называются теоремами, а совокупность всех теорем, выводимых (доказываемых) из данной системы аксиом, называется аксиоматической теорией, построенной на базе этой системы аксиом.

Как возникают аксиоматические теории

Можно указать два пути, по которым происходило становление тех или иных аксиоматических теорий, известных в математике.

Первый путь состоит в том, что та или иная математическая теория, достигнув достаточно высокого уровня развития, принимает характер аксиоматической теории. Именно таким путём были аксиоматизированы следующие математические теории: арифметика (на основе системы аксиом Дж. Пиано), геометрия (на основе разнообразных систем аксиом, в частности, Д. Гильберта, Г. Вейля, М. Пиери и т.д.), теория вероятностей (аксиоматика А.Н. Колмогорова) и другие.

Второй путь возникновения аксиоматических теорий состоит в том, что обнаруживалось глубокое внутреннее сходство между основными чертами, казалось бы, совершенно различных математических теорий. Данное обстоятельство наводило на мысль выделить общие черты и, руководствуясь ими, построить аксиоматическую теорию. На этом пути возникли, по-видимому, все аксиоматические теории и, прежде всего, теории групп, колец, полей и других алгебраических систем, общая или универсальная алгебра и т.д. Здесь появляется прекрасная возможность взаимопроникновения методов одних математических наук в другие, а также возможность свободно интерпретировать первоначальные понятия и аксиомы аксиоматической теории, что раскрывает широкие перспективы приложений таких теорий и является одним из мощных источников действенной силы математики как науки вообще.




Дата добавления: 2015-01-30; просмотров: 53 | Поможем написать вашу работу | Нарушение авторских прав

1 | 2 | 3 | 4 | <== 5 ==> | 6 | 7 | 8 | 9 | 10 | 11 | 12 |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав