Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Оценка риска с использованием интервального анализа

Читайте также:
  1. II. КОЛИЧЕСТВЕННАЯ ОЦЕНКА ЭПИДЕМИЧЕСКОГО ПРОЦЕССА
  2. III ЭТАП: РЕЗУЛЬТАТЫ АНАЛИЗА
  3. III. Образцы анализа.
  4. IV. Оценка соответствия
  5. IX. оценка риска
  6. RAID 2. Отказоустойчивый дисковый массив с использованием кода Хемминга (Hamming Code ECC).
  7. V этап анализа конфликта
  8. VIII. Оценка эффективности, социально-экономических и экологических последствий от реализации Программы
  9. Анализ и управление рисками девелопмента.
  10. Анализ источников финансирования: цели, источники информации, методы и приемы, оценка структуры и динамики.

Задачи с интервальными неопределенностями и неоднозначностями являются важнейшей сферой приложений интервального анализа, а само интервальное описание неопределенности - одним из наиболее популярных, наряду с нечетким (размытым) и вероятностным (стохастическим) описаниями. При этом может показаться, что интервальное описание неопределенности является наименее информативным среди других, наиболее «скупым» на детали, поскольку учитывает лишь границы возможных значений неизвестной величины. Но эта же «скупость» оборачивается «экономностью» интервальных моделей и большей развитостью математического аппарата для их исследования. К примеру, ни в теории нечетких множеств, ни в теории вероятностей не достигнуто той развитости методов решения систем уравнений с неопределенностями, как это имеет место для интервальных систем уравнений.

Большое разнообразие постановок задач с интервалами на входе доставляет идентификация в условиях неопределенности, когда данные об объекте, получаемые в результате измерений, либо каким-нибудь другим способом, не известны точно, но нам все равно требуется найти или как-то оценить параметры объекта.

Вплоть до конца прошлого века модели неопределенности, используемые при оценке параметров и идентификации, имели, главным образом, стохастический или вероятностный характер, основываясь на известных распределениях рассматриваемых величин и т.п. Но во многих практических ситуациях недостаточно информации для того, чтобы считать неопределенные факторы подчиняющимися какой-либо вероятностной модели (к примеру, отсутствует статистическая однородность результатов испытаний), либо эти факторы могут не удовлетворять тем или иным (часто весьма обременительным) условиям, которые на них налагает вероятностная модель неопределенности. Таковыми являются требования независимости исходных величин или специальный вид их распределений и т.п.

В настоящее время интервальное представление факторов неопределенности привлекает все большее внимание инженеров, как наименее ограничительное и наиболее адекватное многим практическим постановкам задач.

Задача оптимизации состоит, как известно, в нахождении наилучшего значения некоторой целевой функции на допустимом множестве, задаваемом обычно системой ограничений (уравнений и/или неравенств). Для решения задачи оптимизации в последние десятилетия было предложено большое количество подходов, каждый из которых имеет свои преимущества и недостатки. Тем не менее, общими чертами большинства из них являются

- локальный характер, и, как следствие, неспособность находить гарантированно глобальный оптимум целевой функции,

- гарантированные оценки точности полученных решений либо находятся подобными методами с большим трудом, либо не находятся вообще.

Методы глобальной оптимизации, основанные на применении интервального анализа, свободны от этих недостатков, так как способны исследовать целые куски области определения целевой функции, имеющие ненулевую меру. Более того, интервальные методы не теряют решений-оптимумов.

Интервальный тип данных и интервальная арифметика реализуются на современных ЭВМ, например, представлением интервала как пары чисел - одного для левого конца интервала, а другого для правого. При этом существующее аппаратное обеспечение, в частности, арифметика чисел с плавающей точкой, используются без каких-либо изменений, так как корректность получающейся интервальной арифметики может быть обеспечена так называемыми направленными округлениями. Например, там, где в задачах внешнего интервального оценивания в процессе вычислений требуется округление результата, нижняя граница интервала должна округляться вниз, а верхняя граница интервала - вверх. Таким образом, даже неизбежные ошибки округления при вычислениях с плавающей точкой будут строго и систематически учитываются в процессе выполнения интервальной программы.

В статистике интервальных данных (СИД) элементами выборки являются не числа, а интервалы, в частности, порожденные наложением ошибок измерения на значения случайных величин. Подробнее этот сравнительно новый, но весьма перспективный раздел эконометрики рассмотрим в главе 9. Здесь дадим лишь общее представление о статистике интервальных данных в сравнении с классической математической статистикой. Прежде всего отметим, что СИД входит в теорию устойчивости (робастности) статистических процедур и примыкает к интервальной математике. В СИД изучены практически все задачи классической прикладной математической статистики, в частности, задачи регрессионного анализа, планирования эксперимента, сравнения альтернатив и принятия решений в условиях интервальной неопределенности и др. Основная идея СИД является общеинженерной - каждая величина должна приводиться вместе с погрешностью ее определения. К сожалению, эта идея еще не стала общеэкономической.

Рассмотрим развитие в течение последних 15 лет асимптотических методов статистического анализа интервальных данных при больших объемах выборок и малых погрешностях измерений. В отличие от классической математической статистики, сначала устремляется к бесконечности объем выборки и только потом - уменьшаются до нуля погрешности. Разработана общая схема исследования, включающая расчет двух основных характеристик - нотны (максимально возможного отклонения статистики, вызванного интервальностью исходных данных) и рационального объема выборки (превышение которого не дает существенного повышения точности оценивания и статистических выводов, связанных с проверкой гипотез). Она применена к оцениванию математического ожидания и дисперсии, медианы и коэффициента вариации, параметров гамма-распределения и характеристик аддитивных статистик, для проверки гипотез о параметрах нормального распределения, в т.ч. с помощью критерия Стьюдента, а также гипотезы однородности двух выборок по критерию Смирнова, и т.д. Разработаны подходы к учету интервальной неопределенности в основных постановках регрессионного, дискриминантного и кластерного анализов.

Многие утверждения СИД отличаются от аналогов из классической математической статистики. В частности, не существует состоятельных оценок: средний квадрат ошибки оценки, как правило, асимптотически равен сумме дисперсии этой оценки, рассчитанной согласно классической теории, и квадрата нотны. Метод моментов иногда оказывается точнее метода максимального правдоподобия. Нецелесообразно с целью повышения точности выводов увеличивать объем выборки сверх некоторого предела. В СИД классические доверительные интервалы должны быть расширены вправо и влево на величину нотны, и длина их не стремится к 0 при росте объема выборки. СИД позволяет снять некоторые противоречия между метрологией и классической математической статистикой. Например, вторая из названных дисциплин утверждает, что путем увеличения числа измерений можно сколь угодно точно оценить параметр, а первая вполне справедливо оспаривает это утверждение. Результаты СИД уточняют интуитивные представления метрологов (которые сосредотачивались, впрочем, вокруг весьма частного с точки зрения эконометрики вопроса - оценивания математического ожидания) и развенчивают "гордыню" математической статистики. (за точность этого вопроса не отвечаю пардон заранее)))

 

 




Дата добавления: 2015-09-10; просмотров: 32 | Поможем написать вашу работу | Нарушение авторских прав

Факторы риска | Выбор стратегии управления риском в условиях неопределенности. | Классификация и характеристики видов риска. | Преимущества и ограничения применения | Метод построения деревьев событий | Основные механизмы экологического нормирования | Оценка непределенности эколого экономических рисков и ее учет при разработке управляющих решений. Виды неоределенностей характеристик риска. | Оценка возможного ущерба | Оценка риска | Понятие риска. |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав