Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

И вычисление величины риска радиационных аварий

Читайте также:
  1. I. Вариационные ряды, средние величины, вариабельность признака
  2. IV. Требования охраны труда в аварийных ситуациях
  3. IX. оценка риска
  4. Абсолютные и относительные величины
  5. Анализ и управление рисками девелопмента.
  6. Анализ риска
  7. Балтика» рассматривает систему управления рисками как неотъемлемую часть управления бизнес-процессами Компании.
  8. Банк данных по детям и подросткам группы риска
  9. Безаварийный алгоритм решений водителя
  10. В вещах математических и в мыслимых, и в не имеющих величины - ... относится

Примеры схем «логических деревьев» аварий показаны на рис.2.53 29. «Логическое дерево» должно составляться для каждой конкретной аварии:

В «логическом дереве» аварий, имевших место на установках с подвижным облучателем (Оценка…, 1978) элементы установки, которые могут привести к авариям обозначены: ω1 – система блокировки и сигнализации по дозе, ω2 – система блокировки и сигнализации по положению облучателя, ω3 – устройство перемещения облучателя. В соответствии с правилами математической логики "логическое дерево" состояний может быть записано в виде:

y(ω1, ω2, ω3) = ω1 ω3 ) (2.13.1)

Условие возникновения аварии записывается в виде:

y(ω123) = 1 (2.13.2)

Нас интересует вероятность возникновения аварии, т.е.

P{y(ω123) = 1)} = P{ωi = 1} (2.13.3)

Для ремонтируемых элементов любой установки вероятность аварии связывают с коэффициентом готовности

P{ωi=1} = 1 – kг(t) = q(t) (2.13.4)

где kг(t) – коэффициент готовности установки в момент t, q(t) – коэффициент неготовности установки (дополнение до 1 коэффициента готовности).

Для применения к уравнению (2.13.1) формулы вероятности независимых событий, его необходимо записать в совершенной дезъюктивной нормальной форме для чего можно использовать теорему разложения алгебры логики. В соответствии, с этой теоремой уравнение (2.13.1) можно переписать в виде:

y(ω1, ω2, ω3) = (ω1, 23) 12, 3) ( 123) (2.13.5)

Учитывая, что P( П i) = уравнение (2.13.5)представим в виде:

P{ y(ω1, ω2, ω3) = 1} = P( П i) = q1(t)·[1 – q2(t)] +

+ q1(t)·q2(t)·[1 – q3(t)] + q1(t)·q2(t)·q3(t)

откуда после преобразований получено:

P{ y(ω1, ω2, ω3) = 1} = (1 – kг1)·(1 – kг2· kг3), (2.13.6)

где kг1, kг2 и kг3 – коэффициенты готовности системы блокировки и сигнализации по дозе, по положению излучателя и устройства перемещения излучателя, соответственно.

В работе (Малютин С.В., 1980) приняты значения kг1= 0,98, kг2 = 0,99 и kг3 = 0,99. В соответствии, с (2.13.6) при указанных значениях коэффициентов получено, что вероятность возникновения радиационной аварии на установках с подвижным облучателем составляет 3·10-4 на установку в год. Погрешность этой оценки определена в 30%.


 
 

 

Рис.2.53. «Логическое дерево» радиационных аварий на мощных гамма-установках с подвижными облучателями: О – техническая причина аварии, ٱ – нарушение персоналом правил и инструкций; 1 – отказ системы перемещения источника излучения, когда источник не переводится в положение хранения или застревает в каналах установки; 2 – отказ системы блокировки двери рабочей камеры по дозе; 3 – отказ системы блокировки по положению источников; 4 – отказ сигнализации о положении источников; 5 – отключение блокировки при входе в рабочую камеру; 6 – работа с неисправной блокировкой;

7 – вход в рабочую камеру без дозиметриста; 8 – внезапное отключение энергоснабжения; 9 – отказ аварийной системы перевода облучателя в положение хранения; 10 – отказ вентиляторов; 11 – отказ сигнализации о работе вентиляторов; 12 – отказ системы блокировки по запретному периоду времени; 13 – вход в камеру до истечения запретного времени; 14 – нарушение целостности радиационной защиты установки; 15 – отказ дозиметрического прибора о превышении уровня радиации в помещениях для персонала; 16 – нерегулярное проведение контроля за целостностью защиты; 17 – разгерметизация источника; 18 – использование в установке источников с повышенным уровнем поверхностного загрязнения

В работе (Хакс В., 1981) приведены результаты анализа радиационных аварий и инцидентов, опубликованных в работах (Малютин С.В., Чистов Е.Д., 1977; Ларичев А.В., Чистов Е.Д., 1981; Чистов Е.Д., Спрыгаев И.Ф. и др., 1970) за период с 1959 года. В табл. 2.22 приведены результаты по анализу причин.

В указанных работах отмечается, что вклад в аварийные ситуации за счет нарушения правил и инструкций составляет 13%. В работе (Малютин С.В., 1980) отмечается, что до 1970 года за счет разгерметизации источников происходило около 32% аварий. С 1970 года благодаря улучшению конструкции источников и повышению их надежности таких аварий практически не стало.

Таблица 2.22

Причины возникновения аварий

Причины Вклад, % Вклад, %
Конструктивные и строительные дефекты Отказ устройств перемещения источников Отказ систем блокировки и сигнализации Нарушение правил и инструкций по РБ Другие нарушения    
Всего:    

Рассмотренная методика оценки радиационной безопасности установок с мощными источниками излучения, как на основе анализа «логических деревьев», так и на основе экспериментальных данных о радиационных авариях и инцидентах может быть применена также и для оценки радиационной безопасности РИУ с источниками средней и малой мощности.

К числу таких устройств относится гамма-высотомер (Касьяненко А.А. и др., 1970). Последний состоит из излучателя и приемного устройства (рис. 2.51б) Излучатель представляет собой защитно-коллимирующее корпус (ЗКК). Капсула радиоактивного изотопа 137Сs активностью от 200 до 500 мг·экв·Ra помещается в специальный узел – пробку, в которой надежно закрепляется. Пробка вставляется в ЗКК. В не рабочем состоянии пробка с источником хранится в контейнере. При выполнении регламентных работ используется переносный контейнер, который при транспортировке и стационарном хранении помещается в транспортный контейнер. Пробка с источником устанавливается в защитно-коллимирующий корпус только на время выполнения штатной работы.

 

 
 


Рис. 2.54. «Логическое дерево» возможных путей возникновения радиационных аварий гамма-лучевого высотомера: О - техническая причина аварии, □ - нарушение персоналом правил и инструкций; а – для внешнего облучения, б – для радиационного загрязнения; 1 – нарушение инструкций по радиационной безопасности; 2 – отказ дозиметрического прибора; 3 – застревание пробки с источником при установке загрузке или извлечении выгрузке в/из ЗКК; 4 – разрушение ЗКК, т.е. нарушение целостности радиационной защиты; 5 – нарушение защитного покрытия ЗКК; 6 – превышение времени выполнения операций по установке-извлечению пробки; 7 – нарушение целостности переносного или транспортного контейнера; 8 – утеря источника или ЗКК; 9 – отказ системы сигнализации об интенсивности излучения в зоне проведения работ; 10 – разгерметизация источника; 11 – использование в РИУ источников или ЗКК с повышенным уровнем поверхностного радиоактивного загрязнения

Все источники перед помещением их в пробку проходят контроль на отсутствие поверхностного загрязнения. Конструкция пробки и ЗКК исключает разрушение или нарушение целостности источника.

Анализ результатов эксплуатации указанного типа высотомеров за период с 1968 года по настоящее время, около 1000 экз., показал, что радиационных аварий и инцидентов, связанных с разгерметизацией источников, нарушением целостности защиты, конструктивных недостатков зарегистрировано не было.

За все время эксплуатации приборов имел место инцидент, связанный с застреванием пробки при установке её в ЗКК за счёт перекоса допущенного оператором. После внесения незначительной конструктивной доработки такие случаи были исключены.

На рис. 2.54 приведено «логическое дерево» по определению возможных путей радиационных аварий гамма-высотомера. Если учесть инцидент с застреванием пробки, то с учетом времени на его ликвидацию, определенный по формулам (2.12.67 – 2.12.69) коэффициент готовности излучателя kг1 = 0,9999, коэффициент готовности системы сигнализации kг2 =0,99, а вероятность радиационной аварии в соответствии с формулой (2.12.5) будет P = 1*10-4.

Столь высокая степень безопасности объясняется простотой и надежностью конструкции излучателя. Практически радиационная авария возможна только при разрушении ЗКК или пробки. Вместе с тем, если пробка с источником находится вне ЗКК или контейнера, излучение находящегося в ней источника может привести к аварийному облучению персонала. Поэтому нарушение инструкций по РБ является одной из наиболее вероятных причин внешнего облучения. Для предотвращения случаев нарушения инструкций по РБ и порядка проведения регламентных работ обязательным является своевременное обучение персонала, индивидуальный дозиметрический контроль и дозиметрическая сигнализация об уровне излучения в зоне проведения работ с источниками.


Контрольные вопросы и задачи

1. Приведите примеры видов деятельности, повышенно опасных для окружающей среды и окружающих.

2. Перечислите основные организационно-правовые формы, в которых осуществляется деятельности в экологической сфере.

3. Дайте определение и раскройте сущность категории «опасность в экологической сфере деятельности».

4. Раскройте механизм воздействия угроз техногенного характера на окружающую среду.

5. Проиллюстрируйте динамику изменения факторов опасности техногенного характера.

6. Раскройте механизм воздействия загрязненных природных объектов на население и территории.

7. Приведите примеры и дайте анализ крупных техногенных аварий.

8. Проведите анализ последствий медленных техногенных воздействий и проиллюстрируйте Ваши аргументы каким-либо примером (Приазовье, Арал, Байкал, Чернобыль, Волжский бассейн, Астраханское газо-конденсатное производство и др.).

9. Задача 1. Проанализировать дерево решений в задаче о медицинской операции (рис.2.10), полагая, что вероятность правильного диагноза составляет 100%. Сделать вывод том, насколько снижает риск смерти надёжная диагностика.

10. Задача 2. Построить дерево отказов для схемы теплообменника с клапаном, управляемым по температуре входного потока кислоты, приведенной на рис. 2.26. По аналогии с построением дерева отказов для схемы, приведённой на рис. 2.23, нарисовать схему, приведённую на рис. 2.24 и построить таблицы по аналогии с таблицами 2.6-2.9.

11. Задача 3. Построить карту для функции .

Шаг 1. Преобразовать выражение в форму суммы произведений.

Шаг 2. Каждый из членов занести в карту.

Шаг 3. Упростить выражение.

12. Задача 4. Для карты, представленной на рис. 2.33, произвести попарное комбинирование ячеек, расположенных в верхней и нижней строках в третьем и четвёртом столбцах. Записать выражение для функции.

 

13. Задача 5. Для карты, представленной на рис. 2.33, произвести комбинирование четырех ячеек, расположенных в верхней и нижней строках в третьем и четвёртом столбцах. Записать выражение для функции.

14. Задача 6. Для карты, представленной на рис. 2.33, произвести комбинирование четырёх ячеек, расположенных в третьей и четвёртой строках крайних столбцов. Записать выражение для функции.

15. Задача 7. Вычислить надёжность системы, приведённой на рисунке при известной надёжности ее элементов: надёжность её компонентов: P(A)=0,9, P(B)=0,8, P(C)=0,7.

    A   B    
     
     
  C        
       

16. Задача 8. Вычислить надёжность систем, описываемых следующими уравнениями: T = AB+AC+DE, T = ABC+ E+ BD, T=ABC+ACD+CD.

17. Задача 9. Рассмотрим самолёт с 4-мя двигателями, который может лететь, если исправны хотя бы по одному симметричному двигателю. Какова надёжность самолета, если надёжность любого двигателя равна 0,9?

       
   


A B C D

Рис. Расположение двигателей самолёта

1 – Составить логическую функцию, которая должна отражать работу всех двигателей, комбинацию по три двигателя, и комбинацию со «сбалансированными» парами AD и BC. Пары AB, CD, AC и BD являются несбалансированными. (Примечание: всего в уравнении должно быть 7 слагаемых);

2 – Нарисовать карту событий и выбрать один из возможных вариантов перектрытия несовместных событий;

3 – Для выбранных вами комбинаций несовместных событий записать функцию событий;

4 – С учётом несовместимости событий и в предположении их независимости записать функцию надёжности;

5 – Вычислить надёжность полета и риск аварии (отказ одного двигателя).

18. Задача 10. Придумайте задачу о надёжности автомобиля, включив в рассмотрение отказ таких узлов, как рулевое управление, гидросистема тормозов, колодки левого или правого колеса, или других узлов, выбрав надёжность узлов на свое усмотрение. Разберитесь в том надёжность, каких узлов оказалась недостаточной и на сколько её надо увеличить, чтобы обеспечить себе безопасные условия поездок. Успехов в творческих поисках и приятных, безаварийных путешествий!

19. Задача 11. Предположим, что имеется три головных события, включая и рассмотренное нами, финансируемые из одного и того же фонда. Это обычная ситуация для предприятия и приходится выбирать, что важнее и что надо делать в первую очередь. Данае о головных событиях и альтернативах приведены в таблице. Обратите внимание на то, что исходные значения критичности для каждого головного события отличаются, очевидно, и вероятности их появления и потери различны.

Таблица

Данные для трех головных событий и альтернатив

Головное событие Альтернатива Затраты, рублей Начальная критичность, рублей Новое значение критичности, рублей Прибыль Затраты/прибыль
      521,4 141,9 379,5 1,98
    521,4 139,5 381,9 1,18
    521,4 103,8 417,6 2,16
      172,5   82,5 18,18
    172,5   112,5 26,66
    172,5   142,5 15,79
            0.25
            2,25

Литература

Акимова Т.А., Хаскин В.В. Экология. Человек – Экономика – Биота – Среда: Учебник для вузов. – 2-е изд., перераб. и доп. – М.: ЮНИТИ-ДАНА, 2000. – 566с.

Безопасность России. Правовые, социально-экономические и научно-технические аспекты. Том 1 / Под рук. академика РАН К. Ф. Фролова. – М.: МГФ Знание, 1998.

Бобылев С.Н., Ходжаев А.Ш. Экономика природопользования. – М.: ТЕИС, 1997. – 272 с.

Браун Дэвид Б. Анализ и разработка систем обеспечения техники безопасности. – М.: Машиностроение, 1979. – 359 с.

Бринчук М. М. Экологическое право (Право окружающей среды). Учебник. – М.: Юристъ, 1998.

Быховский А.В., Ларичев А.В., Чистов Е.Д. Вопросы защиты от ионизирующих излучений в радиационной химии. – М.: Атомиздат, 1970. – 279 с.

Ваганов П. А. Ядерный риск: Учеб. пособие. – СПб.: Изд-во С.-Петерб. ун-та, 1997. – 112 с.

Валов, Г. М. Алгебраические структуры и булева алгебра: уч. пособие для студентов инж.-техн. спец. / Г.М.Валов, И.В. Землякова. – Кострома, 2000. – 18 с.

Владимир Соколов. Судьба Арала. (Фото В. Крохина). Литературная газета, № 47. 18 ноября 1987 г.

Дураков Ю.А. Эти разнополярные человеческие факторы //Inventors, 2005. www.sateclibrary.ru

Емельянов И.Я., Клёмин А.И., Поляков Е.Ф. Методы оценки надежности ядерных реакторных установок // Атомная энергия, 1974, т. 37, вып. 5. – С. 408-416.

Ерош И. Л. Дискретная математика. Булева алгебра, комбинационные схемы, преобразования двоичных последовательностей: уч. пособие / И.Л. Ерош. – СПб., 2001. – 29 с.

Захарченко М.П. и др., Гигиеническая диагностика в экстемальных условиях. – СПб., 1995. – 222 с.

Измалков В.И., Измалков А.В. Техногенная и экологическая безопасность и управление риском. – С-Пб, НИЦЭБ РАН, 1998. – 482 с.

Изучение причин и последствий радиационной аварии на мощной гамма установке / Е.Д. Чистов, О.Ф. Парталин, В.Н. Рахманов и др. // Научные работы институтов охраны труда ВЦСПС. 1975. –Вып. 94. – С. 12-15.

Исследование устойчивости высокоактивных источников гамма-излучения / Е.Д. Чистов, А.В. Ларичев, В.А. Гольдин и др. //Методы измерений и испытаний закрытых источников ионизирующих излучений // Труды симпозиума специалистов стран-членов СЭВ. – Москва, Атомиздат, 1976. – С. 78-82.

Касьяненко А.А. Теоретические основы построения и способы технической реализации частотно-импульсных устройств с Пуассоновским распределением информационных потоков. Дисс. докт.техн.наук. – Москва-Таганрог, РУДН, 1991. – 334 с.

Коледов Л. В. Минимизация булевых функций: уч. пособие / Л. В. Коледов, В. В. Ларченко, Н. Т. Мишняков. – Ростов н/Д, 2000. – 37 с.

Курович В.Н. Обеспечение радиационной безопасности при проведении специальных работ на мощных радиоизотопных гамма установках. – Дисс. канд. техн. наук. – Обнинск, Филиал НИФХИ им. Л.Я. Карпова, 1985. – 181 с.

Ларичев А.В., Чистов Е.Д. Безопасность в радиационной технологии. – М.: Энергоиздат, 1981. – 200 с.

Либерман А.Н. Техногенная безопасность: человеческий фактор. – СПб., Изд-во «ВИС», 2006. – 104 с.

Малютин С.В., Чистов Е.Д., Оценка безопасности мощных радиационных установок (сообщение 1) // Научные работы институтов охраны труда ВЦСПС,1977. вып. 107. – С. 26-30.

Машкович В.П. Защита от ионизирующих излучений: Справочник. 3-е изд. – М.: Атомиздат, 1982. – 296 с.

Методические указания по проведению анализа риска опасных производственных объектов. МУ РД 01-418-01. – М., Госгортехнадзор России, 2001.

Милютин С.В. Исследование степени радиационной безопасности мощных радиоизотопных гамма-установок и разработка способов её повышения. – Дисс. канд. техн. наук. – М.: ВЦНИИ ОТ, 1980. – 116 с.

Москалев Ю.И., Журавлев В.Ф., Уровни риска при различных условиях лучевого воздействия. – М.: Энергоатомиздат, 1983. – 112 с.

Нормы радиационной безопасности: НРБ-99. – М., 1999.

Обухов В. Е. Логические уравнения и прикладные задачи: монография / В.Е.Обухов, В.В. Павлов. – Киев: Наук. думка, 1992. – 187 c.

О радиационной безопасности населения. Федеральный закон № 3-ФЗ от 9 января 1996 г.

Об использовании атомной энергии. Федеральный закон № 170-ФЗ от 21 ноября 1995 г. (с изменениями от 10 февраля 1997 г.)

Основы инженерной психологии / Под ред. Б.Ф Ломова. – М.: Высшая школа, 1986. – 448 с.

Оценка безопасности мощных радиационных установок (сообщение 2) / С.В. Малютин, Е.Д. Чистов, И.Ф. Спрыгаев и др. // Безопасность труда. – М.: Профиздат, 1978. – С. 33-40.

Пархоменко Г.М., Копаев В.В., Мусаткова А.Н. Организация трудовых процессов при работе с радиоактивными веществами. – М.: Энергоатомиздат, 1987. – 104 с.

Петросов Э.Г., Анохин А.Н. Анализ надёжности работы операторов Билибинской АЭС при ликвидации аварийных ситуаций. 1998.

Радиационная…защита. Публикация МКРЗ № 26: Пер. с англ. / Под ред. А.А. Моисеева, П.В. Рамзаева. – М.: Атомиздат, 1978. – 88 с.

Руководство по гигиенической оценке факторов рабочей среды и трудового процесса, критерии и классификация условий труда. Р 2.2.2006–05,. – М.: Федеральная служба по надзору в сфере защиты прав потребителя и благополучия человека., Москва, 2005. – 142 с.

Руководство по радиационной защите для инженеров: Сокр. пер. с англ. – М.: Атомиздат, 1972. – Т.1. – 421 с.

Савельев П.С. Пожары- катастрофы. – М., 2003. – 426 с.

Сараев О.Н. Надёжности человеческого фактора в атомной энергетике уделяется приоритетное внимание // Газета «Энергетика и промышленность России». 31.01.2003.

Селье Г. Очерки об адаптационном синдроме: Пер. с англ. – М., 1960.

Селье Г. Стресс без дистресса: Пер. с англ. – М., 1982.

Серов Г.П. Правовое регулирование экологической безопасности при осуществлении промышленной и иных видов деятельности. – М.: Ось-89, 1998.

Фридлендер, Б. И. Элементы булевой алгебры: уч. пособие / Б. И. Фридлендер, Р. А. Хаиров. – М.: МТУСИ, 2005 (М.). – 39 с.

Хакс В., Методы оценки радиационной безопасности при использовании источников ионизирующих излучений в странах-членах СЭВ. Дисс. канд. техн. наук. – М.: ВЦНИИОТ, 1981. – 133 с.

Хенли Э.Дж., Кумамото Х. Надёжность технических систем и оценка риска. /Пер. с англ. – М.: Машиностроение, 1984. – 528 с.

Чистов Е.Д. Обеспечение радиационной безопасности при эксплуатации мощных радиационных установок / Атомная энергия, 1976, Т. 41,
Вып. 4. – С. 260-263.

Чистов Е.Д., Спрыгаев И.Ф., Коренков И.П. и др. Оценка аварийных доз на мощных гамма-установках // Атомная энергия, 1970, т. 30, вып. 5. – С. 460-462.

Шевелёв Ю. П. Высшая математика: Дискретная математика: Ч. 1: Теория множеств. Булева алгебра (для автоматизированной технологии обучения) / Ю. П. Шевелёв. – Томск, 2000. – 114 с

Р. Эбель. Настоящая опасность – ошибка человека // La Stampa / 6 january 2005.

Ядра и радиационная стойкость конструкционных материалов / М.В. Пасечник, И.Е. Кашуба, М.Б. Федоров и др. – Киев, Наукова думка, 1978. – 312 с.

Frnold, Bradford H., Logic and Boolean Algebra/ – Prentice-Hall, Inc. Englewood Cliffs, N.J., 1962.

Fussel J. Fault Tree Analiysis – Concept and Techniques. – In: Generic Techniques in Reliability Assessment, Henly E., Lynn J. (eds.).– Norfold Publishing Co. – Leyden, Holland, 1976.

Steindley K.D. A 60Co hot all accident / Heatth physics, 1976, V.31, # 4, – P. 382-385.


 




Дата добавления: 2015-09-09; просмотров: 30 | Поможем написать вашу работу | Нарушение авторских прав

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | <== 41 ==> | 42 |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.021 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав