Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Выпуклость и вогнутость функции

Читайте также:
  1. Cущноcть, функции и клаccификация cоциальных технологий в cоциально-культурном cервиcе
  2. Funcio laesa (нарушение функции).
  3. I. Общая теория и функции систематической теории
  4. I. Функционалы , зависящие от одной функции
  5. II.1. Функции специального федерального государственного образовательного Стандарта для детей с нарушениями речи
  6. IV. Порядок и формы контроля за исполнением государственной функции
  7. А) Основные психофизические функции
  8. Алгоритм нахождения точек перегиба функции.
  9. Асимптоты графика функции
  10. Асимптоты графика функции

Пусть функция f (x) имеет производную в каждой точке промежутка (a; b). Если на промежутке (a; b) график функции f (x) расположен выше любой своей касательной, проведенной в точке этого промежутка, то функция называется вогнутой на этом промежутке (иногда говорят "выпуклой вниз") (рис. 11).

Если на промежутке (a; b) график функции f (x) расположен ниже любой своей касательной, проведенной в точке этого промежутка, то функция называется выпуклой на этом промежутке (иногда говорят "выпуклой вверх") (рис. 12).

Рис. 11 Рис. 12

 

Точка x 0 называется точкой перегиба функции f (x), если в этой точке функция имеет производную и существуют два промежутка: (a; x 0) и (x 0; b), на одном из которых функция выпукла, а на другом вогнута (рис. 13).

Будем называть функцию возрастающей в точке x 0, если она непрерывна в этой точке и возрастает в некоторой ее окрестности. Подобным образом можно определить функцию, убывающую в точке.

Приведем без доказательства важную для исследования функций теорему.

Если f¢¢ (x) > 0 на промежутке (a; b), то на этом промежутке функция f (x) вогнута. Если f¢¢ (x) < 0 на промежутке (a; b), то на этом промежутке функция f (x) выпукла.

Из положительности второй производной функции на промежутке следует возрастание первой производной на этом промежутке, а это, как показано на рисунке 14, – признак вогнутой функции. Аналогичным образом иллюстрируется второе утверждение теоремы.

Если x 0 – точка перегиба функции f (x), то f¢¢ (x 0) = 0.

Приведем другую формулировку достаточных условий экстремума функции.

Если в точке x 0 выполняются условия:

1) (x 0) = 0; f¢¢ (x 0) < 0, тогда x 0 – точка максимума;

2) (x 0) = 0; f¢¢ (x 0) > 0, тогда x 0 – точка минимума;

3) (x 0) = 0; f¢¢ (x 0) = 0, тогда вопрос о поведении функции в точке остается открытым. Здесь может быть экстремум, например в точке x 0 = 0 у функции y = x 4, но может его не быть, например в точке x 0 = 0 у функции y = x 5. В этом случае для решения вопроса о наличии экстремума в стационарной точке можно использовать достаточные условия экстремума, приведенные выше.

Рассмотрим пример из микроэкономики.

В количественной теории полезности предполагается, что потре­битель может дать количественную оценку (в некоторых единицах измерения) полезности любого количества потребляемого им товара.

Это означает существование функции полезности TU аргумента Q – количества купленного товара. Введём понятие предельной полезности, как добавочной полезности, прибавляемой каждой последней порцией товара. Далее построим двумерную систему координат, откладывая по горизонтальной оси

количество потребляемого товара Q, а по вертикальной оси – общую полезность TU, как это сделано на рисунке 15. В этой системе координат проведем график функции TU = TU (Q). Точка Q 0 на горизонтальной оси означает количество приобретенного товара, величина D Q –добавочный приобретенный товар. Разность D TU = TU (Q 0 + D Q) – TU (Q 0) ‑ добавочная полезность, полученная от покупки “довеска” D Q. Тогда добавочная полезность от последней приобретенной порции (или единицы количества) товара вычисляется по формуле D TU / D Q (Курс экономической теории. Под общей редакцией проф. Чепурина М.Н. 1995, стр. 122). Эта дробь, как можно видеть, зависит от величины D Q. Если здесь перейти к пределу при D Q ® 0, то получится формула для определения предельной полезности MU:

.

Это означает, что предельная полезность равна производной функции полезности TU (Q). Закон убывающей предельной полезности сводится к уменьшению этой производной с ростом величины Q. Отсюда следует выпуклость графика функции TU (Q). Понятие функции полезности и представление предельной полезности в виде производной этой функции широко используется в математической экономике.

 




Дата добавления: 2015-09-10; просмотров: 34 | Поможем написать вашу работу | Нарушение авторских прав

ВВЕДЕНИЕ | ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ | Предел и непрерывность функции | Производная | Дифференциал функции | Формула Лагранжа | Неопределенный интеграл | Формула интегрирования по частям | Определенный интеграл | Определенный интеграл как функция верхнего предела |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав