Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Директориальное свойство параболы

Читайте также:
  1. Quot;ВТОРОЕ СВОЙСТВО ВАКЦИН... - ПОСТВАКЦИНАЛЬНЫЕ ОСЛОЖНЕНИЯ"?!
  2. Вывод канонического уравнения параболы.
  3. Геометрические свойства параболы (исследование канонического уравнения).
  4. ЗНАЧЕНИЕ И СВОЙСТВО МИНЕРАЛОВ
  5. Классическое определение вероятности. Свойство вероятностей. Элементы комбинаторики.
  6. Магнитное поле в веществе. Гипотеза Ампера о молекулярных токах. Намагниченность вещества. Свойство намагниченности вещества. Напряженность магнитного поля
  7. Основное свойство пространства фазы
  8. Отражение как свойство материи
  9. править]Параболы в физическом пространстве

 

Точка называется фокусом параболы, прямая — директрисой параболы, середина перпендикуляра, опущенного из фокуса на директрису, — вершиной параболы, расстояние от фокуса до директрисы — параметром параболы, а расстояние от вершины параболы до ее фокуса — фокусным расстоянием (рис.3.45,а). Прямая, перпендикулярная директрисе и проходящая через фокус, называется осью параболы (фокальной осью параболы). Отрезок , соединяющий произвольную точку параболы с ее фокусом, называется фокальным радиусом точки . Отрезок, соединяющий две точки параболы, называется хордой параболы.

 

Для произвольной точки параболы отношение расстояния до фокуса к расстоянию до директрисы равно единице. Сравнивая директориальные свойства эллипса, гиперболы и параболы, заключаем, что эксцентриситет параболы по определению равен единице .

 

Геометрическое определение параболы, выражающее ее директориальное свойство, эквивалентно ее аналитическому определению — линии, задаваемой каноническим уравнением параболы:

 

(3.51)

 

Действительно, введем прямоугольную систему координат (рис.3.45,6). Вершину параболы примем за начало системы координат; прямую, проходящую через фокус перпендикулярно директрисе, примем за ось абсцисс (положительное направление на ней от точки к точке ); прямую, перпендикулярную оси абсцисс и проходящую через вершину параболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат оказалась правой).

 

 

Составим уравнение параболы, используя ее геометрическое определение, выражающее директориальное свойство параболы. В выбранной системе координат определяем координаты фокуса и уравнение директрисы . Для произвольной точки , принадлежащей параболе, имеем:

 

 

где — ортогональная проекция точки на директрису. Записываем это уравнение в координатной форме:

 

 

Возводим обе части уравнения в квадрат: . Приводя подобные члены, получаем каноническое уравнение параболы

 


т.е. выбранная система координат является канонической.


Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.51), и только они, принадлежат геометрическому месту точек, называемому параболой. Таким образом, аналитическое определение параболы эквивалентно его геометрическому определению, выражающему директориальное свойство параболы.

 

 




Дата добавления: 2015-09-10; просмотров: 123 | Поможем написать вашу работу | Нарушение авторских прав

<== предыдущая лекция | следующая лекция ==>
Общие сведения.| Уравнение параболы в полярной системе координат

lektsii.net - Лекции.Нет - 2014-2024 год. (0.005 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав