Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Факторы определяющие строение кристаллических структур.

На оглавление

Для объяснения природы кристаллических структур веществ, в кристаллографии используются понятия координационное число, ионный радиус, атомарный радиус, принцип плотнейшей упаковки атомов и ионов в кристаллах.

 

Координационные числа

 

Координационным числом данного атома в структуре минерала называется число ближайших от него соседних атомов. Так, в галите координационное число натрия – 6 (вокруг него расположено по шесть атомов хлора), координационное число хлора также – 6 (каждый атом хлора соседствует с шестью атомами натрия). В идеальных плотнейших упаковках координационное число зависит от соотношения размеров ее атомов: если один вид атомов слагает упаковку, то от размера других атомов зависит то, в какую пустоту (тетраэдрическую или октаэдрическую) они могут поместиться. Размеры пустот зависят от размеров атомов ("шаров"), формирующих плотнейшую упаковку, а оптимальное соотношение радиусов этих атомов и радиуса атома в пустоте всегда одно и то же. Для октаэдрической координации оно равно 0,41, для тетраэдрической – 0,22. Также плотно можно разместить атом между тремя, восемью, двенадцатью соседними. Для таких структур возможны координационные числа 3, 4, 6, 8, 12.

 

Атомные и ионные радиусы

 

Истинные размеры атомов и ионов измерить невозможно. Для минералогии важны радиусы ионов в их реальных кристаллических постройках, но экспериментально (рентгеновскими и другими методами) определяются только межузельные расстояния пространственных решеток. Расстояние между центрами ближайших атомов кремния и кислорода в окиси кремния – кварце равно 0,161 нм. Что же касается радиусов ионов и атомов в кристаллах, то этот вопрос в разное время и разными исследователями решался по-разному, в результате чего сформировались различные системы представлений, которые можно разбить на две группы: в первой радиусы ионов главнейших в земной коре химических элементов (Si, Fe, Ca, Mg, Na и др.) меньше радиуса иона кислорода; во второй - эти соотношения обратны. Сейчас идет активная переоценка разных представлений о размерах ионов в кристаллических постройках минералов. Например, А. С. Поваренных считает, что в разных по своей природе химических соединениях атомы одного и того же элемента должны иметь различные радиусы. Размер иона Fe3+ в сульфидах составляет 0,111 нм, во фторидах 0,086 нм, в оксидах – 0,094. Эти представления подтверждаются многими работами по электронно- и рентгенографии минералов. Так для Na, к примеру, установлены колебания радиуса от 0,109 до 0,131 нм. Представления о неодинаковых размерах ионов в разных веществах считаются наиболее прогрессивными, но они еще не нашли должного развития, поэтому пока используются значения радиусов по В. М. Гольдшмидту.


Принцип плотнейшей упаковки атомов и ионов

 

Для объяснения природы кристаллических структур веществ, в кристаллографии используется принцип плотнейшей упаковки атомов и ионов в кристаллах, согласно которого принимается, что, во-первых, форма всех атомов и ионов сферическая и, во-вторых, весь объем кристалла или отдельных его структурных блоков заполнен плотно соприкасающимися атомами и ионами. На основе этого принципа удалось просто и геометрически образно охарактеризовать многие особенности кристаллического строения минералов.Рассмотрим для начала возможные способы плотнейшей укладки шаров равного диаметра. Положим друг на друга два слоя плотно соприкасающихся шаров, обозначив нижний слой буквой А, верхний – В. Третий слой можно положить на слой В по-разному. В одном случае точно так же, как слой А, в другом – шары третьего слоя займут неповторяемую позицию С, их затем можно перекрыть четвертым слоем шаров, который повторит положение слоя А.

Упаковка первого типа (рис. 1.30.) характеризуется повторяемостью АВ АВ АВ... Её называют двуслойной (а по характеру симметрии – гексагональной).

 

Рис. 1.30. Плотнейшая гексагональная упаковка

 

Для упаковок второго типа (рис. 1.31.) характерна повторяемость АВС АВС АВС... Ее называют трехслойной (кубической). Имеется много других порядков повторяемости слоев в плотнейшей укладке шаров, но все они буду являться комбинациями первых двух упаковок.

 

Рис. 1.31. Плотнейшая кубическая упаковка

 

Плотно уложенные шары занимают лишь 74% заполняемого ими объема, а 26% приходится на пустоты между шарами. Их два типа. Одни пустоты, меньшие по размеру, располагаются между четырьмя шарами. Их называют тетраэдрическими. Другие, большие по размеру, пустоты ограничены шестью шарами – октаэдрические. В бесконечной кристаллической постройке на n шаров приходится 2 n тетраэдрических и n октаэдрических пустот.

Примером построения кристаллической структуры вещества почти точно по принципу плотнейшей упаковки может являться корунд Al2O3. В нем крупные ионы кислорода (радиус 0,132 нм по В. Гольдшмидту) образуют двуслойную плотнейшую упаковку, 2/3 октаэдрических пустот занято ионами Al (радиус 0,057 нм, по В. Гольдшмидту), тетраэдрические позиции свободны.

Число минералов с идеальной плотнейшей упаковкой атомов относительно невелико. Это объясняется в первую очередь тем, что такие кристаллические постройки возможны для минералов с ненаправленными химическими связями - металлической или ионной. Например, самородные металлы (Au, Cu, Ag) имеют структуры с трехслойной (кубической) плотнейшей упаковкой, самородные иридий и цинк – с двухслойной (гексагональной) упаковкой. Из распространенных в природе веществ плотнейшая упаковка характерна для корунда Al2O3 и шпинели MgAl2O4 . Довольно близки к плотнейшей упаковке структуры некоторых ортосиликатов – оливинов, гранатов и др. Большинство же минералов имеет сложные кристаллические постройки, в них лишь строение отдельных блоков отвечает принципу плотнейшей упаковки атомов. Этот принцип – лишь модель, помогающая интерпретировать реальность (рис. 1.32.).

Рис. 1.32. Слой из плотноупакованных октаэдров и тетраэдров в отношении 1:2

 

Изоморфизм. Типы изоморфизма

 

Изоморфизм – свойство атомов (или ионов) одних веществ заменять в структуре атомы (или ионы) других. Явления изоморфизма очень широко распространены в минералах. Так, химический состав минерала вольфрамита отображается формулой (Fe, Mn) [WO4]. Он представляет собой изоморфную смесь, где атомы марганца замещают в структуре атомы железа, и наоборот. Крайние члены этого ряда носят название ферберита Fe[WO4] и гюбнерита Mn[WO4]. Минерал оливин (Mg, Fe)2[SiO4] также представляет собой изоморфную смесь, где атомы магния в структуре замещаются атомами железа. Конечные члены этого непрерывного ряда носят названия форстерита и фаялита. Наряду с простыми случаями может происходить сложное изоморфное замещение целых комплексов в кристаллических структурах. Классическим примером такого сложного замещения являются минералы из группы полевых шпатов - плагиоклазы. Плагиоклазы представляют собой непрерывный ряд минералов, где пара Ca2+ и Al3+ замещаются на пару Na+ и Si4+ (CaAlNaSi). Крайние члены этого ряда называются анортитом Ca[Al2Si2O8] и альбитом Na[AlSi3O8]. В соответствии с изменением состава изменяются и физические свойства плагиоклазов, например оптические свойства, плотность и др.

По степени совершенства изоморфных замещений можно выделить два случая. В первом случае замещение одного элемента другим может быть в пределах до 100% это совершенный, или полный, изоморфизм. Во втором случае замещение может быть частичным от сотых долей, до нескольких процентов это несовершенный, или ограниченный, изоморфизм.

Многие изоморфные примеси не отражаются формулой минерала, так как количество их невелико. Так, в цинковых обманках ZnS обычно присутствует в виде изоморфной примеси Fe, а иногда Cd и In.Если происходит изоморфное замещение одних элементов (или комплексов) другими, то в формуле минерала, они берутся в скобки и отделяются друг от друга запятой, причём порядок написания зависит от количества этих элементов (или компонентов).

 

Полиморфизм

 

В переводе с греческого слово "полиморфизм" означает многоформность. Это явление до известной степени противоположно изоморфизму и заключается в том, что одинаковые по химическому составу вещества образуют различные структуры. Полиморфными могут быть элементы и сложные соединения. Происхождение различных полиморфных модификаций (разновидностей) связано с различием в условиях их образования. Каждая из модификаций имеет свою структуру, а отсюда и свои специфические свойства. Хорошим примером полиморфизма углерода являются минералы алмаз и графит. Свойства их совершенно различны: алмаз самый твёрдый из минералов, графит имеет твёрдость 1. Плотность алмаза 3,5, графита 2,2. Алмаз кристаллизуется в кубической сингонии, графит - в гексагональной. Причина столь различных свойств указанных минералов объясняется их структурой, т.е. расположением атомов углерода. Связь атомов углерода в графите менее прочная, чем в алмазе, структура графита листовая, в виде плоских гексагональных сеток. Значительные расстояния между этими сетками и определяют его свойства: лёгкую расщепляемость, меньшую плотность и др.

Различают два вида полиморфизма. Первый вид энантиотропия – характеризуется обратимостью (переходом) полиморфных модификаций из одной в другую при определённых температурах и давлениях. Примером энантиотропии могут служить переходы кварца в высокотемпературную разновидность SiО2 – тридимит, а также переходы алмаза в графит. Второй вид – монотропия – одна полиморфная модификация (нестабильная) может переходить в другую (стабильную), но обратный переход невозможен. Примером монотропии является переход марказита в пирит.

 

Химический состав и формулы минералов

 

Для выяснения химического состава минерала производят его химический анализ и определяют химическую формулу минерала. Формулы могут быть эмпирическими, показывающими только химический состав, и структурными, дающими представление о пространственном расположении атомов в минерале и их связь между собой. Для некоторых минералов структурные формулы ещё не установлены. Но благодаря рентгеновским методам исследования во многих случаях удалось определить взаимоотношения атомов в кристаллических структурах минералов. Этими вопросами связи химизма со строением вещества и его свойствами занимается кристаллохимия.

В минералах важно выявить катионы и анионные комплексы, характеризующие типы кристаллических структур. При написании формул минералов анионные комплексы отделяют от катионов квадратными скобками, например, сидерит Fe[CO3].Следует иметь в виду, что эмпирические формулы минералов не отображают особенностей их внутреннего строения и в минералогии они в настоящее время заменены структурными формулами. Так, эмпирическая формула минерала мусковита H2KAl3Si3O12, а структурная KAl2[AlSi3O10](OH,F)2. Последняя показывает, что в структуре мусковита имеется сложный анионный комплекс и что вода в мусковите находится не в виде H2O, а в виде гидроксила (OH)-, причём этот гидроксил может быть в свою очередь замещён F-.

В минералогии нередко различают безводные и водные минералы (сульфаты, фосфаты, карбонаты и др.). К водным относятся те минералы, которые имеют в своём составе электрически нейтральные молекулы воды. Вода в составе минералов может быть связанной и свободной. Связанная, или кристаллизационная, вода входит в кристаллическую решётку минералов, занимая в ней определённые места. Примерами могут быть некоторые карбонаты и сульфаты, например гипс. Свободная вода не участвует в строении кристаллической решётки минералов, количество её может быть различным в зависимости, например, от температуры. Примерами свободной воды является вода цеолитов. И, конечно, вся гигроскопическая вода, удерживающаяся в микроскопических трещинах минералов и пород силами поверхностного натяжения, также является свободной. Свободная вода удаляется при нагревании до 110°С.Гидроксилсодержащие минералы в строгом смысле не могут быть названы водными. Между электрически нейтральной молекулой воды H2O и отрицательно заряженным ионом гидроксила (HO)- существует принципиальная разница. Гидроксил (HO)- может замещать в минералах такие ионы как Cl- и Fe-, он прочно удерживается в кристаллических решётках, а молекулы воды этими свойствами не обладают.

 

Контрольные вопросы:

1. Что такое координационное число, ионный радиус, атомарный радиус?

2. Что такое принцип плотнейшей упаковки атомов и ионов в кристаллах?

3. Охарактеризуйте понятия изоморфизм и полиморфизм.

4. В чем различие структурных и химических формул минералов?

 

 




Дата добавления: 2015-09-12; просмотров: 98 | Поможем написать вашу работу | Нарушение авторских прав

Строение Земли | Методы изучения внутреннего строения и состава Земли | Сейсмическая модель Земли | Вещественный состав мантии и ядра Земли | Распределение массы между внутренними геосферами. | Тепловое поле Земли. Источники тепловой энергии. | Магнетизм Земли | Строение земной коры | Химический состав земной коры | Общая характеристика минералов |


lektsii.net - Лекции.Нет - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав