Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Сроки контроля: ноябрь и декабрь 2014 г в соответствии с расписанием на кафедре

Читайте также:
  1. II. Объекты и сроки прохождения практики
  2. БАЗА ИНТЕРНЕТ-ТЕСТОВ ПО СОЦИОЛОГИИ ДЕКАБРЬ 2010
  3. Билет №22. Сроки защиты гражданских прав.
  4. В конце каждой главы (раздела) подраздела следует обобщить материал в соответствии с целями и задачами, сформулировать выводы и достигнутые результаты.
  5. В Республике Казахстан каждый человек имеет право на гражданство. Гражданство в Республике Казахстан приобретается и прекращается в соответствии с настоящим Законом.
  6. В соответствии с государственным стандартом послевузовской профессиональной подготовки специалистов с высшим медицинским образованием по специальности
  7. В соответствии с законом 1945 г. французские ... банки специализировались на проведении долгосрочных операций с ценными бумагами.
  8. В соответствии с нормами радиационной безопасности (НРБ-99) вокруг АЭС устанавливается санитарно-защитная зона
  9. В соответствии с российским законодательством банк -это ... организация, которая выполняет депозитные, расчетные и ссудные операции.
  10. Виды вопросов в соответствии с решаемыми задачами

 

Центральный процессор должен иметь возможность обращаться к каждой отдельной ячейке памяти, для чего в программный счетчик засылается адрес требуемой ячейки. Адрес представляет собой бинарное (двоичное) число. Если оно равно длине машинного слова, то максимальная емкость памяти определяется максималь­ным числом, которое может быть задано одним машин­ным словом. С помощью 4-разрядного бинарного слова можно непосредственно адресоваться только к 16 ячейкам памяти. Если же адресная часть будет состоять из большего числа разрядов, то емкость памяти соответ­ственно возрастает, например при 8-разрядном слове — до 256 слов. Дальнейшее увеличение емкости памяти требует еще большего расширения адресной части команды. В малоразрядных микропроцессорах для этого приходится использовать два, три и более машинных слов в составе команды.

Емкость памяти принято исчислять порциями, крат­ными 1024 словам, сокращенно емкость такой порции обозначают как 1К. ячеек. Для адресации к 1К ячеек необходимо иметь 10-битный адрес. При 12-битном адресе максимальная емкость памяти равна 409G, т. е. 4К. При 16-разрядном слове емкость памяти возрастает до 64К. ячеек.

Совокупность ячеек, к которым может обращаться микропроцессор, называется адресным пространством или полем памяти. Фактическая емкость памяти в системе может быть меньше потенциально возможной, поэтому фактически имеющиеся ячейки образуют рабочее (физи­ческое) пространство памяти микропроцессорной системы. Адресное пространство графически изображается в виде столбца из некоторого числа строк, равного числу фактически имеющихся ячеек памяти с адресами от 0000 до 1111. Нумерация ячеек в микро­процессорных системах обычно производится сверху вниз, однако в некоторых микро-ЭВМ, в частности типа «Элек­троника», более распространена снизу вверх.

Различают основную (внутреннюю) память и внешнюю память. Основная память — это запоминающие устрой­ства, которые подключены непосредственно к шинам адреса и данных и к которым постоянно обращается центральный процессор за получением команд и данных, необходимых для работы ЭВМ. Внешняя память — это запоминающие устройства боль­шой емкости, к которым централь­ный процессор не имеет непосред­ственного доступа, и потому они подключаются через систему вво­да-вывода.

По способу обращения запо­минающие устройства можно раз­делить на два класса: с произволь­ным обращением, или выбором (ЗУПВ), и последовательным об­ращением. В памяти с произволь­ным доступом к информации мож­но обращаться, определяя адреса в любом порядке, и время считы­вания из ячейки памяти не зависит от ее адреса. В последовательной памяти данные можно считывать только в том же порядке, в котором они записывались. Так как в последовательной памяти время обращения зависит от положения ячейки, в которой хранятся данные, эта память не используется как основ­ная. Обычно последовательная память применяется как буферная в терминалах и других внешних устройствах. К последовательной памяти относятся магнитные ленты и диски.

Память с произвольным обращением делится на оперативную и постоянную. Оба вида можно реализо­вать по биполярной и МОП-технологии.

Постоянное запоминающее устройство (ПЗУ) — это память, позволяющая только прочитать то, что в ней записано, и не допускающая возможности хотя бы частич­ного изменения информации, занесенной в нее в процессе изготовления. В английской технической литературе ПЗУ называют ROM — Read Only Memory, т. е. памятью только для чтения. Постоянная память обычно характери­зуется большим объемом хранимой информации и мень­шей потребляемой мощностью по сравнению с оператив­ным запоминающим устройством. Но главное достоинство в том, что хранимая в ПЗУ информация не разрушается при выключении питания.

В постоянной памяти хранятся программы, которые в отличие от данных остаются неизменными. Микро­процессор только считывает команды из ПЗУ и организует их выполнение, но не записывает новой информации в эту область памяти. Программа управления для автоматичсской системы управления технологическим процессом после испытаний и окончательной отладки должна быть зафиксирована в ПЗУ, не допускающем случайного или умышленного изменения хранящейся там информации. Запоминающее устройство, в котором может произ­водиться как запись информации, так и ее считывание, т. е. может изменяться содержание хранящейся информа­ции, называют оперативным (ОЗУ). В английской техни­ческой литературе ОЗУ называют RAM — Random Access Memory, т. е. памятью с произвольным доступом. Слова «с произвольным доступом» относятся к порядку адресов, по которым в любой последовательности может записываться и считываться информация.

Главным недостатком всех полупроводниковых уст­ройств оперативной памяти является то, что они постоянно потребляют энергию для хранения информации и даже при кратковременном отключении источников питания теряют информацию. Приходится добавлять батарейные или аккумуляторные источники питания, чтобы ячейки памяти сохраняли записанную в них информацию при случайном отключении напряжения сети. При этом ОЗУ может переводиться в режим с пониженным (примерно в 2 раза) напряжением питания и очень малым потреблением мощности.

Устройства памяти, в которых содержание записанной информации не исчезает при отключении питания, назы­вают неразрушаемой памятью. Такими являются магнит­ные устройства внешней памяти (диски, кассеты и др.), а также ПЗУ.

В микропроцессорной системе различные обла­сти адресного пространства группируют в блоки из последовательных ячеек, образующих карту памяти. Блоки мо­
гут относиться к аппаратным устройствам, например блоки ПЗУ и ЗУПВ, или программным образованиям, например основная программа, подпрограмма
преобразования данных, стандартная программа ввода-вывода и др.

Так как одни и те же адресные шины и шины данных используются всеми устройствами памяти, эти устройства могут рассматриваться как функционально одинаковые. Однако нужно соблюдать осторожность, чтобы не использовать для записи данных и промежуточных резуль­татов те зоны памяти, где расположено ПЗУ, не дающее возможности записи.

Практически все действия микропроцессора сводятся к пересылке информации из одного регистра в другой. Закодированная в бинарной форме информация внутри системы представляется электрическими сигналами вы­сокого или низкого уровня напряжения, и для их передачи, например от точки А к точке В, необходим путь прохожде­ния. Если же требуется и передавать сигналы, и пре­рывать их распространение, то на этом пути надо поставить логический элемент и подавать на его вход сигнал управления U (рис. 1.7, а). Когда сигнал управления имеет значение 1 (высокий уровень напряже­ния), то на выходе логического элемента, а значит, и в точке В, будет сигнал, равный значению сигнала в точке А. Это может быть как 1, так и 0. При подобном использовании логических элементов их называют управ­ляемыми вентилями. Если приемник В должен получать информацию от нескольких источников, то выходы всех управляемых вентилей подключаются к логическому элементу ИЛИ (рис. 1.7). С другой стороны, если один и тот же сигнал А надо подавать на разные приемники В\, В2, Вз, то на входе каждого приемника ставится управляемый вентиль (рис. 1.7, в).

В пределах ин­тервала времени Т\ на входах вентилей формируются сиг­налы. Когда они меняют свои значения, то должно пройти какое-то время, определяемое длительностью распростра­нения сигналов по цепям, прежде чем установятся все новые значения. Это время задержки заведомо меньше Т. Новое значение передается дальше в течение интервала Тг и, в свою очередь, может быть использовано в течение интервала Т следующего машинного цикла.

Пересылка информации внутри центрального про­цессора представляет собой передачу содержимого регистров, которая в большинстве случаев осуще­ствляется по системе внутренних информационных шин. Информационные шины — это обычно печатные провод­ники, число которых должно быть не меньше числа разрядов в машинном слове данного микропроцессора, но нередко оно даже больше. К этим проводникам через запирающие вентили подключены все регистры центрального процессора. Подключение регист­ров к шинам или отключение производится сигналами управления, которые подаются на входы логических вентилей наряду с информационными сигналами. Если отпирающие сигналы равны 1, то на информационные шины подаются либо 1, либо 0 в зависимости от значения соответствующего бита регистра. Если же отпирающие сигналы равны 0, то данный регистр отключен от ин­формационных шин. Для передачи данных, например, из регистра А в регистр У необходимо отпереть схемы, присоединенные к выходам регистра А, и запереть подключенные к выходам регистра В и всех остальных регистров. Так передается содержимое регистра А на шины. В регистр Y информация попадает с шин, когда сигнал синхронизации регистра Y равен 1. Когда этот сигнал равен 0, регистр заперт. Обычно сигналы синхронизации всех регистров имеют значение 0, предотвращая тем самым поступление данных, не предусмотренных программой, а также сохранение их содержания.

Организация системы памяти

Как уже указывалось, система памяти состоит из постоянных запоминающих устройств (ПЗУ), допускающих только чтение записанной в них информа­ции, и оперативных запоминающих устройств (ОЗУ), в которых можно сначала записать текущие данные, а потом их прочитать.

Программа управления технологическим процессом должна размещаться в ПЗУ, чтобы сохраняться при выключении питания. Таким образом, в системе автома­тизации технологических процессов ПЗУ обязательно должно быть. В простых системах иногда стараются только им и обойтись. Это упрощает аппаратную часть системы. Но в таком случае нельзя использовать стек, и, следовательно, подпрограммы, поэтому усложняется раз­работка программного обеспечения системы.

Постоянные запоминающие устройства.В состав ПЗУ входят устройство декодирования адреса, выходные буфе­ра и программируемая логическая матрица (ПЛМ), являющаяся собственно местом хранения информации. Простейшая матрица представляет собой ряды перекрещивающихся горизонтальных (адресных) и верти­кальных (информационных) шин (проводников). В точ­ках, определяемых той программой, которую хранит дан­ная матрица, шины соединяются между собой диодами. Использование диодов обеспечивает одностороннее про­текание тока и устраняет возможное влияние шин друг на друга.

Подключение диода к соответствующей информационной шине эквивалентно записи единицы, а если шины не соединены, то это соответствует записи 0. Таким образом, расположение диодов в матрице определяет хра­нимое в ПЗУ одно машинное слово. Диодная матрица является развитием элементарных логических схем ИЛИ, так как сигнал на каждой выходной шине, на­пример сигнал 1-го бита, появляется, когда активизиро­вана (т. е. подан высокий уровень напряжения) адресная шина 1, или 3, или 5 и т. д.

На вход запоминающего устройства по линиям шины адреса поступает адрес ячейки памяти, из которой должно быть считано хранящееся там машинное слово. Этот адрес нужно декодировать, т. е. выделить ту входную линию, которая соответствует заданной ком­бинации 0 и 1 на шине адреса. Для декодирования адреса можно также использовать диодную матрицу. Конструктивно она подобна матрице ИЛИ, но отличается от нее направлением включения диодов. На вход дешифратора должен подаваться парафразный код, так как используются и прямые, и инверсные выходы, поэтому число входных (горизонтальных) шин равно удвоенному числу разрядов адреса. Каждой кодо­вой комбинации на входе декодирующей матрицы соответ­ствует сигнал только на одной, вполне определенной вертикальной шине. Число вертикальных (выходных) шин равно 2", где п — число разрядов на входе.

Адрес ячейки памяти записывается в регистр на входе ЗУ. Регистр представляет собой ряд триггеров по числу разрядов кода. Так как используются и прямые, и инвер­сные выходы, число горизонтальных шин окажется в два раза больше числа разрядов адреса. Положительные напряжения на выходах триггеров запирают диоды мат­рицы. Если же на выходе каких-то триггеров будут низкие уровни, то через эти триггеры произойдет замыка­ние соответствующих вертикальных шин на корпус, поэтому напряжение источника будет погашено нагрузоч­ным сопротивлением.

В результате выходное напряжение будет только на той единственной вертикальной шине, у которой при данной кодовой комбинации на входе нет соединений с горизон­тальными шинами, имеющими нулевой потенциал. Напри­мер, при подаче на вход сигнала 0000 напряжение будет только на выходной шине 0, так как первая шина окажется замкнутой на корпус через диод 5, вторая шина будет замкнута диодом 10, третья — диодами 13 и 14 и т. д. Как и в кодирующей матрице, диоды ставятся для того, чтобы исключить взаимное влияние различных цепей друг на друга.

Постоянное ЗУ для хранения программы создается на основе двух диодных матриц. Первая из них — матрица И — является декодирующим устройством адреса. Выход­ная шина этой матрицы указывает определенную, един­ственную ячейку памяти, соответствующую адресу на входе матрицы. Этот выход (вертикальная шина) сое­диняется со входом (горизонтальной шиной) второй матрицы — матрицы ИЛИ. Во второй матрице размеще­ние диодов на пересечениях заданной горизонтальной шины с вертикальными должно соответстоввать конкрет­ному слову памяти, хранящемуся по данному адресу, независимо от того, является это слово командой, константой или какой-либо другой информацией.

Хотя имеются ПЗУ, созданные действительно на основе диодных ПЛМ, использование ПЛМ является, скорее, удобным методическим приемом для пояснения действия ПЗУ. Большинство реальных ПЗУ создаются на основе МОП-микросхем, которые очень удобны для этой цели. Решетка матрицы образуется диффузионными слоями истоков, стоков, линий питания и заземления МОП-транзисторов и перпендикулярно расположенными, напы­ленными поверх слоя оксида алюминиевыми шинами.

 

КАЛЕНДАРНО-ТЕМАТИЧЕСКИЙ ПЛАН САМОСТОЯТЕЛЬНОЙ РАБОТЫ для студентов I курса фармацевтического факультета по дисциплине «Химия общая и неорганическая» на I семестр 2014-2015 уч.года

Сроки контроля: ноябрь и декабрь 2014 г в соответствии с расписанием на кафедре

Реферативная работа является частью самостоятельной учебно-научной работой, к которой относится в полной мере весь комплекс требований, предъявляемых к научной статье, подготавливаемой к публикации. Работа над рефератом предполагает углубленное изучение, анализ и систематическое изложение избранной проблематики, разностороннюю оценку ее содержания и значения. Реферат должен быть написан на уровне научно-аналитического обзора. Реферат должен иметь титульный лист (1 стр.), на следующей странице (2 стр.) печатается оглавление с указанием страниц, на последней странице – литература. Список цитируемой литературы печатается с указанием фамилий и инициалов всех авторов. Общий объем реферата - до 25 страниц, целесообразно около 15-20 страниц машинописного текста через 1,5 интервала. Реферат должен иметь план-оглавление (в нем последовательно излагаются название пунктов реферата, указываются страницы, с которых начинается каждый пункт), введение (формулируется суть исследуемой проблемы, обосновывается выбор темы, определяется ее значимость и актуальность выбранной темы, указывается цель и задачи реферата, дается анализ использованной литературы), основную часть (каждый раздел, доказательно раскрывая отдельную проблему или одну из ее сторон, логически является продолжением предыдущего, даются все определения понятий, теоретические рассуждение, исследования автора или его изучение проблемы), а также заключение (подводятся итоги или дается обобщенный вывод по теме реферата, предлагаются рекомендации). Реферат должен быть написан четким, ясным, литературно грамотным языком, изложение должно удовлетворять основным логическим требованиям определенности, последовательности, доказательности. Ключевые понятия и термины, обсуждаемые и используемые в реферате, должны быть точно определены, законы – точно сформулированы, все рассуждения должны вестись в стиле научной дискуссии, быть обоснованными, опираться на факты и логически связанно вести к определенным идеям и гипотезам, результатам и выводам. В заключении уместно дать краткое резюме, итоги и выводы проделанной работы, подчеркнуть ее значение для развития координационной химии, охарактеризовать направления и перспективы дальнейших исследований. Написанный реферат за две недели до его защиты предъявляется преподавателю для проверки. Если возникает необходимость доработки содержания реферата, то преподаватель возвращает рукопись студенту. Защита реферата осуществляется в форме устного доклада в присутствии студенческой группы и преподавателя(лей) (занятие – конференция). Рекомендуется проводить защиту рефератов в формате мини-конференции, что позволяет реализовать интерактивную форму проведения занятия.




Дата добавления: 2014-12-15; просмотров: 43 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав