Читайте также:
|
|
Неандерталоидность черепа:
голова в мозговой части относительно узка и вытянута в длину;
массивный и утолщённый скелет лицевой и мозговой частей;
при взгляде сбоку обводы черепа укладываются в окружность с центром в районе уха;
низкий и как бы убегающий назад лоб;
мозговая часть невысокая, но зато вытянута назад и вмещает крупный головной мозг;
очень развитые надбровные дуги;
широкие скулы;
лицевая часть массивна, вытянута вперёд (кроме подбородка) и спереди немного заужена;
\объёмистая носовая полость и крупная, выдающаяся вперёд переносица, нос может быть с горбинкой;
мощные жевательные мышцы;
большая ротовая полость сильные челюсти;
очень крупные челюсти и зубы;
подбородок почти отсутствует.
Разумеется, эти черты могут встречаться и у современного человека, но обычно по отдельности или реже в том или ином сочетании, причём чаще обращают внимание на большие брови.
Если же мы сравним череп классического неандертальца и не совсем характерный череп нашего современника, имеющего подобные черты (мощные кости, толстые надбровные дуги, глубоко сидящие глазницы, низкий скошенный лоб, мощные челюсти почти без подбородка, покатая и вытянутая назад долихоцефальная форма мозговой части, см. рис. ниже), то можем заметить ещё ряд наиболее характерных отличий:
надбровные дуги монолитные и выпуклые, образуют почти сплошной волнообразный валик
круглые глазные орбиты;
сглаженная щёчная кость верхних скул;
затылок сильно вытянут и заострён
крепкой и короткой шеи
Кроманьонцы.
ранние представители современного человека. Объём головного мозга равен 1600—1800 см³ (больше, чем у среднего современного европейца). Рост около 180 см. и выше.
Жили общинами по 15—30 человек и впервые в истории создали поселения. Жилищем были пещеры, шатры из шкур, в Восточной Европе встречаются землянки.
Обладал развитой членораздельной речью, строил жилища, одевался в одежды из шкур, было развито гончарное дело. Жили родовым обществом, начали приручать животных и заниматься земледелием.
Многочисленные находки свидетельствуют о наличии культа охоты. Фигурки зверей пронзали стрелами, убивая таким образом зверя. Кроманьонец умел не только гравировать и рисовать плоские рисунки, но научился передавать и объёмные изображения.
В Дольни-Вестонице в Моравии найдена древнейшая в мире печь для обжига керамики, которая использовалась кроманьонцем
Билет 14
На самых ранних стадиях своего развития зародыш питается за счет окружающих его остатков клеток или за счет жидкости маточной трубы. Первые кровеносные сосуды, которые образуются в зародыше, предназначены для подачи питательных веществ из желточного мешка. У человека этот источник питания играет незначительную роль. Начиная со 2-й недели развития, кровеносные сосуды плода, проникая в хориальные ворсины, приходят в тесное соприкосновение с материнской кровью. С этого момента, благодаря специально обеспечивающему это соприкосновение раз витию плаценты, весь рост плода происходит за счет питательных веществ материнской крови.
У вполне сформированного плода кровь приносится от плода к плаценте пупочными артериями и возвращается обратно по пупочной вене. Между материнским и зародышевым кругом кровообращения нет прямого сообщения. Плацента служит для плода органом дыхания, питания и выделения. Так, пупочная артерия приносит к плаценте темную венозную кровь, которая в этом органе отдает СО2 и поглощает О2, в силу чего кровь пупочной вены имеет артериальный цвет. Однако потребность плода в кислороде невелика. Плод защищен от всякой потери тепла, движения его вялы и большую часть времени вовсе отсутствуют, поэтому окислительные процессы в организме плода обеспечивают лишь построение развивающихся тканей. Зато плод нуждается в обильной доставке питательных веществ, которые он получает при помощи плацентарного кровообращения из материнской крови в той форме, которая наиболее приспособлена к потребностям плода.
Плацента обладает селективной проницаемостью, но только в отношении пищевых веществ и гормонов, которые являются физиологическими и в нормальных условиях переходят от матери к плоду и обратно. В плаценте существуют механизмы активного и пассивного транспорта. Барьерная функция плаценты достаточно относительна, так как при нарушении структуры и функции плаценты к плоду начинают проникать не только пищевые, но и вредные химические вещества, а также вирусы, бактерии и паразиты.
Изменения в деятельности органов и систем беременной направлены на достижение двух целей: во-первых, обеспечение адекватного роста плода, увеличения матки и оптимальной динамики всех других необходимых для поддержания беременности изменений в половой сфере и, во-вторых, обеспечение организма плода необходимыми питательными веществами и кислородом в нужном объеме.
Плодоматеринские отношения. Взаимодействие организма матери и организма плода обеспечивается нейрогуморальными факторами. При этом в обоих организмах различают рецепторные (воспринимающие информацию), регуляторные (осуществляющие ее переработку) и исполнительные механизмы.
Рецепторные механизмы организма матери расположены в матке в виде чувствительных нервных окончаний, которые первыми воспринимают информацию о состоянии развивающегося плода. В эндометрии находятся хемо-, механо- и терморецепторы, а в кровеносных сосудах — барорецепторы. Рецепторные нервные окончания свободного типа особенно многочисленны в стенках маточной вены и децидуальной оболочке в области прикрепления плаценты. Раздражение рецепторов матки вызывает изменения интенсивности дыхания, уровня кровяного давления в организме матери, направленные на обеспечение нормальных условий для развивающегося плода. Регуляторные механизмы организма матери включают отделы ЦНС (височная доля мозга, гипоталамус, мезенцефальный отдел ретикулярной формации), а также эндокринную систему. Важную регуляторную функцию выполняют гормоны — половые, тироксин, кортикостероиды, инсулин и др. Так, во время беременности происходит усиление активности коркового вещества надпочечников матери, в результате повышается выработка кортикостероидов, которые участвуют в регуляции метаболизма плода. В плаценте вырабатывается хорионический гонадотропин, стимулирующий образование адренокортикотропного гормона гипофиза. Регуляторные нейроэндокринные аппараты матери обеспечивают сохранение беременности, а также необходимый уровень функционирования сердца, сосудов кроветворных органов, печени и оптимальный уровень обмена веществ, газов в зависимости от потребности плода.
16. наиболее опасными периодами являются:
1) время развития половых клеток - овогенез и сперматогенез;
2) момент слияния половых клеток - оплодотворение;
3) имплантация зародыша (4-8-е сутки эмбриогенеза);
4) формирование зачатков осевых органов (головного и спинного мозга, позвоночного столба, первичной кишки) и формирование плаценты (3-8-я неделя развития);
5) стадия усиленного роста головного мозга (15-20-я неделя);
6) формирование функциональных систем организма и дифференцирование мочеполового аппарата (20-24-я неделя пренатального периода);
7) момент рождения ребенка и период новорожденности - переход к внеутробной жизни; метаболическая и функциональная адаптация;
8) период раннего и первого детства (2 года - 7 лет), когда заканчивается формирование взаимосвязей между органами, системами и аппаратами органов;
9) подростковый возраст (период полового созревания - у мальчиков с 13 до 16 лет, у девочек - с 12 до 15 лет).
Одновременно с быстрым ростом органов половой системы активизируется эмоциональная деятельность.
Выделяют следующие критические периоды развития:
1. Для всего организма – вредные факторы могут привести к гибели зародыша. Так, по данным ВОЗ, в ходе нормальной беременности гибнет 300 плодов из 1000 беременностей.
2. Частные критические периоды – существуют в онтогенезе каждого органа – гетерогенность, связанная с неодновременной закладкой и темпом дифференцировки органов и систем – наличие для органа нескольких критических периодов развития, соответствующим сохранившимся филэмбриогенезам и вводимым ими этапом детерминации.
3. Критические периоды развития клетки как биологической системы. Имеются данные о критических периодах развития отдельных клеточных органелл.
1-ый критический период от 0 до 10 дней – нет связи с материнским организмом, эмбрион или погибает или развивается (принцип «все или ничего»). Питание зародыша аутотропное, за счет веществ, содержащихся в яйцеклетке, а затем за счет жидкого секрета трофобласта в полости бластоцисты.
2-ой критический период от 10 дней до 12 недель происходит формирование органов и систем, характерно возникновение множественных пороков развития. Значение имеет не столько срок гестации, сколько длительность воздействия неблагоприятного фактора.
3-ий критический период (внутри 2-го) 3-4 недели – начало формирования плаценты и хориона. Нарушение ее развития приводит к плацентарной недостаточности и как следствие – к гибели эмбриона или развитию гипотрофии плода.
4-ый критический период 12-16 недель, формируются наружные половые органы. Введение эстрогенов может привести к дисплазии эпителия матки и влагалища во взрослом состоянии.
5-ый критический период 18-22 недели, завершение формирования нервной системы.
Факторы, влияющие на развитие плода, делятся на экзогенные и эндогенные:
- физические (температура, газовый состав воздуха, ионизирующая радиация и др.);
- химические (вещества, применяемые в промышленности, в быту, проходящие через плацентарный барьер, лекарственные вещества, наркотические препараты, избыток витаминов А, Д, С, алкоголь, никотин и т.д.);
- алиментарные (неполноценное питание в 3-4 раза увеличивает пороки развития плода);
- хроническое кислородное голодание (хроническая гипоксия приводит к гипотрофии);
- экстрагенитальная патология (инфекционная патология, вирусная инфекция, перенесенная беременной).
Ионизирующее излучение: малые дозы излучения приводят к нарушению обмена, наследственным болезням (увеличивается число пороков, рак щитовидной железы и др.).
17. Терратогенные факторы
Тератоген – средовой (внешний) фактор, действующий на эмбрион или плод и вызывающий нарушение его строения или функционирования, не вызывая при этом изменения наследственных структур. Эффект тератогенного воздействия зависит от ряда условий:
- время действия тератогена. Действие тератогена до наступления стадии клеточной дифференциации приводит, как правило, к гибели зародыша. При действии тератогена в период дифференцировки органов возникают различные пороки развития. Тип порока зависит от чувствительности конкретного органа в момент воздействия вредного фактора;
- доза и взаимодействие с другими факторами. Для большинства тератогенов существует дозо-зависимый эффект, т.е. чем выше доза, тем тяжелее поражение. В некоторых случаях тератогенность фактора повышается при наличии других факторов (например, тератогенное влияние антиконвульсантов усиливается в комбинации с другими препаратами).
- материнские факторы. Риск возникновения тератогенно обусловленной аномалии зависит от индивидуального порога чувствительности материнского организма к тератогенному агенту.
Тератогенные факторы разнообразны по природе и среди них выделяют:
• физические факторы (механические или радиационные воздействия),
• химические факторы (лекарственные вещества, химические вещества, используемые в быту и промышленности и др.)
• биологические факторы (вирусы, микоплазмы, протозойные инфекции и другие внутриутробные инфекции).
Билет 19
Генетика человека, или медицинская генетика, изучает явления наследственности и изменчивости в различных популяциях людей, особенности проявления и развития нормальных (физических, творческих, интеллектуальных способностей) и патологических признаков, зависимость заболеваний от генетической предопределенности и условий окружающей среды, в том числе от социальных условий жизни. Формирование медицинской генетики началось в 30-е гг. XX в., когда стали появляться факты, подтверждающие, что наследование признаков у человека подчиняется тем же закономерностям, что и у других живых организмов.
Задачей медицинской генетики является выявление, изучение, профилактика и лечение наследственных болезней, а также разработка путей предотвращения вредного воздействия факторов среды на наследственность человека.22. 1 и 2 закон менделя
Закон единообразия гибридов первого поколения.
Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.
При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей
Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.
Закон расщепления, или второй закон Менделя: при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.
Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание.
Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.
1.
Важнейшим научным доказательством единства всего живого послужила клеточная теория Т. Шваннаи М. Шлейдена (1839). Открытие клеточного строения растительных и животных организмов, уяснение того, что все клетки (несмотря на имеющиеся различия в форме, размерах, некоторых деталях химической организации) построены и функционируют в целом одинаковым образом, дали толчок исключительно плодотворному изучению закономерностей, лежащих в основе морфологии, физиологии, индивидуального развития живых существ.
Открытием фундаментальных законов наследственности биология обязана Г. Менделю (1865), Г. де Фризу, К. Корренсу и К. Чермаку (1900), Т. Моргану (1910—1916), Дж. Уотсону и Ф. Крику (1953). Названные законы раскрывают всеобщий механизм передачи наследственной информации от клетки к клетке, а через клетки — от особи к особи и перераспределения ее в пределах биологического вида. Законы наследственности важны в обосновании идеи единства органического мира; благодаря им становится понятной роль таких важнейших биологических явлений, как половое размножение, онтогенез, смена поколений.
Представления о единстве всего живого получили основательное подтверждение в результатах исследований биохимических (обменных, метаболических) и биофизических механизмов жизнедеятельности клеток. Хотя начало таких исследований относится ко второй половине XIX в., наиболее убедительны достижения молекулярной биологии, ставшей самостоятельным направлением биологической науки в 50-е гг. XX столетия, что связано с описанием Дж. Уотсоном и Ф. Криком (1953) строения дезоксирибонуклеиновой кислоты (ДНК). На современном этапе развития молекулярной биологии и генетики возникло новое научно-практическое направление — геномика, имеющая в качестве главной задачи прочтение ДНК-текстов геномов человека и других организмов. На основе доступа к личной биологической информации возможно ее целенаправленное изменение, в том числе путем введения генов от других видов. Такая возможность представляет собой важнейшее доказательство единства и универсальности базисных механизмов жизнедеятельности. К. Линней (1735) ввел бинарную классификацию, согласно которой для определения положения организмов в системе живой природы указывается их принадлежность к конкретному роду и видуИдея единства мира живых существ находит свое подтверждение также в экологических исследованиях, относящихся главным образом к XX в. Представления о биоценозе (В. Н. Сукачев) или экологической системе (А. Тенсли) раскрывают универсальный механизм обеспечения важнейшего свойства живого — постоянно происходящего в природе обмена веществ и энергии. Названный обмен возможен только в случае сосуществования на одной территории и постоянного взаимодействия организмов разного плана строения (продуцентов, консументов, деструкторов) и уровня организации. Учение о биосфере и ноосфере (В. И. Вернадский) Применив генетико-биохимический подход в изучении болезней человека, А. Гаррод заложил основы молекулярной патологии (1908). Этим он дал ключ к пониманию практической медициной таких явлений, как различная восприимчивость людей к болезням, индивидуальный характер реакции на лекарственные препараты.раскрывает место и планетарную роль живых форм, включая человека, в природе, так же как и возможные последствия ее преобразования людьми.
12. Возникновение религии
Религия как явление, присущее человеческому обществу на протяжении значительной части его истории, и религиозные убеждения характерны до настоящего времени для подавляющей части населения земного шара.
В религии можно рассматривать две стороны: внешнюю — как она представляется постороннему наблюдателю, и внутреннюю, которая открывается верующему, живущему в соответствии с духовными и нравственными принципами данной религии.
С внешней стороны, религия представляет собой, прежде всего, мировоззрение, включающее в себя ряд положений (истин), без которых (хотя бы без одного из них) она теряет саму себя, вырождаясь или в колдовство, оккультизм и подобные псевдорелигиозные формы, являющиеся лишь продуктами её распада, извращения, или в религиозно-философскую систему мысли, мало затрагивающую практическую жизнь человека. Религиозное мировоззрение всегда имеет общественный характер и выражает себя в более или менее развитой организации (церкви) с определённой структурой, моралью, правилами жизни своих последователей, культом и т. д.
С точки зрения известного эволюциониста и популяризатора атеизма Р. Докинза, изложенной в книге «Бог как иллюзия», религия представляется как побочный продукт какого-то социально-полезного явления, обладающий признаками «психического вируса» — мема.
В марксизме считается[12], что корнем религии является реальное практическое бессилие человека, проявляющееся в его повседневной жизни, выражающееся в том что он не может самостоятельно обеспечить успеха своей деятельности. Известно выражение марксистов о том, что «религия — опиум народа»[13].
Согласно представлениям концепции «дорелигиозного периода», в истории человечества существовал период, когда не было никаких религиозных представлений. Впоследствии в силу тех или иных причин у людей возникли религиозные верования. Но идея «дорелигиозного периода» ещё не объясняет, как же всё-таки возникли религиозные представления у людей. Со времён античности и до наших дней некоторые атеистически настроенные мыслители высказывали мнение о том, что вера человека в сверхъестественные силы возникла в результате страха перед природными стихиями, или в результате обмана одних людей другими, или обожествления реальных царей и героев древности.
Некоторые исследователи полностью отвергают концепцию «дорелигиозного периода» и утверждают, что современной этнографии не известен ни один народ, ни одно племя, не имеющее религиозной традиции, дорелигиозное[14].
С точки зрения теории прамонотеизма, религия в человеческом обществе существовала изначально, то есть с момента появления человека. Впервые как научно обоснованная концепция прамонотеизма была сформулирована шотландским учёным и литератором Э. Лэнгом, впоследствии получила свое развитие в 12-томном труде католического священника, антрополога и лингвиста В. Шмидта «Происхождение идеи Бога»[15]. Согласно данной теории, во всем многообразии существующих и существовавших религий можно обнаружить отголоски древнейшей, изначальной веры в Единого Бога-Творца, которая предшествовала всем известным религиям.
21. 21.
Геноти́п — совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие «геном» некодирующих последовательностей, не входящих в понятие «генотип»). Вместе с факторами внешней среды определяет фенотип организма.
Гено́м — совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов.
Феноти́п (от греческого слова phainotip — являю, обнаруживаю) — совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешне средовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены.
Фенотип — совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития).
Некоторые характеристики фенотипа напрямую определяются генотипом, например цвет глаз. Другие сильно зависят от взаимодействия организма с окружающей средой — например однояйцевые близнецы могут различаться по росту, весу и другим основным физическим характеристикам, несмотря на то, что несут одни и те же гены.
Домина́нтность (доминирование) — форма взаимоотношений между аллелями одного гена, при которой один из них (доминантный) подавляет (маскирует) проявление другого (рецессивного) и таким образом определяет проявление признака как у доминантных гомозигот, так и у гетерозигот.
Рецесси́вный ген (англ. recessive gene) — генетическая информация, которая может подавляться воздействием доминантного гена и не проявляется в фенотипе. Рецессивный ген способен обеспечить проявление определяемого им признака только в том случае, если находится в паре с соответственным рецессивным геном. Если же он находится в паре с доминантным геном, то он не проявляется, так как доминантный ген подавляет его. Свойства, представленные рецессивными генами, проявляются в фенотипе у потомка лишь в том случае, если у обоихродителей присутствует рецессивный ген.
Неполное доминирование
При неполном доминировании гетерозиготы имеют фенотип, промежуточный между фенотипами доминантной и рецессивной гомозиготы. Например, при скрещивании чистых линий львиного зева и многих других видов цветковых растений с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. На молекулярном уровне самым простым объяснением неполного доминирования может быть как раз двукратное снижение активности фермента или другого белка (если доминантный аллель дает функциональный белок, а рецессивный — дефектный).
При неполном доминировании во втором поколении моногибридного скрещивания наблюдается одинаковое расщепление по генотипу и фенотипу в соотношении 1:2:1.
Кодоминирование
При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки, за которые отвечает каждый из аллелей, проявляются одновременно (смешанно). Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека.
22. 1 и 2 закон менделя
Закон единообразия гибридов первого поколения.
Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.
При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей
Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.
Закон расщепления, или второй закон Менделя: при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.
Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание.
Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.
Закон чистоты гамет: в каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи.
Условия выполнения закона чистоты гамет: Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.
Менделирующие признаки это признаки которые подчиняются закономерностям(множественный аллелизм,доминантный фактор и т. д.)
У человека – напр., альбинизм (отсутствие пигментации, вызываемое рецессивным геном; встречается у всех человеческих рас с частотой 1 на 20— 30 тыс. новорожденных), цвет глаз, характер волос (курчавые или гладкие), групповые отличия по различным факторам в крови (см. Группы крови) и др. Законам Менделя подчиняются и гены, обусловливающие наследственные болезни человека.
Аутосомно-доминантный тип наследования – мутантный аллель (вариант) доминирует над нормальным аллелем (вариантом), т.е. проявляется как в гомозиготном, так и в гетерозиготном состоянии; патологическая наследственность прослеживается в родословной "по вертикали"; по крайней мере, один из родителей имеет проявление данной мутации. При этом мутантный ген расположен в аутосоме (неполовой хромосоме) и наследование не сцеплено с полом.
Аутосомно-рецессивный тип наследования. нормальный аллель (вариант) подавляет проявление мутантного аллеля (варианта), т.е. мутация может проявиться, только находясь в гомозиготном состоянии. При этом мутантный ген расположен в аутосоме (неполовой хромосоме) и наследование не сцеплено с полом.
23. Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.
Условия выполнения закона независимого наследования:
1. Все условия, необходимые для выполнения закона расщепления.
2. Расположение генов, отвечающих за изучаемые признаки, в разных парах хромосом (несцепленность).
24. Аллельные гены – гены, расположенные в одних и тех же локусах гомологичных хромосом. Контролируют развитие альтернативных признаков (доминантных и рецессивных - желтая и зеленая окраска семян гороха).
Типы аллельных взаимодействий:
― Полное доминирование — взаимодействие двух аллелей одного гена, когда доминантный аллель полностью исключает проявление действия второго аллеля. В фенотипе присутствует только признак, задаваемый доминантной аллелью.
― Неполное доминирование — доминантный аллель в гетерозиготном состоянии не полностью подавляет действие рецессивного аллеля. Гетерозиготы имеют промежуточный характер признака.
Дата добавления: 2014-12-15; просмотров: 112 | Поможем написать вашу работу | Нарушение авторских прав |