Читайте также:
|
|
14.
Векторное произведение радиуса-вектора материальной точки на ее импульс:
называют моментом импульса
, этой точки относительно точки
15. АБСОЛЮТНО ТВЕРДОЕ ТЕЛО – модельное понятие классической механики, обозначающее совокупность материальных точек, расстояния между которыми сохраняются в процессе любых движений, совершаемых этим телом. Иначе говоря, абсолютно твердое тело не только не изменяет свою форму, но и сохраняет неизменным распределение массы внутри.
Моментом силы относительно неподвижной оси Z называется скалярная величина Мz, равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси Z.
16. При сравнении законов поступательного и вращательного движений видна аналогия между ними. Во вращательном движении аналогом силы становится ее момент, аналог массы - момент инерции. Какая же величина будет аналогом импульса тела? Это момент импульса тела относительно оси.
Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:
где r - радиус-вектор, проведенный из точки О в точку A, p=mv - импульс материальной точки (рис. 1); L - псевдовектор, направление которого совпадает с направлением поступательного движения правого винта при его вращении от r к р.
17. Наряду с поступательными и вращательными движениями тел в механике значительный интерес представляют и колебательные движения. Механическими колебаниями называют движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Закон движения тела, совершающего колебания, задается с помощью некоторой периодической функции времени x = f (t).
Уравнение гармонических колебаний имеет вид:
,
18. Дифференциальное уравнение гармонических колебаний
Решением дифференциального уравнения называется функция, обращающая это уравнение в тождество.
Нетрудно проверить прямой подстановкой, что в нашем случае решение имеет вид:
,
т.е. является гармонической функцией. Значит уравнение , это дифференциальное уравнение гармонических колебаний.
19.Математическим маятником считается система подвижная на данной нерастяжимой нити, масса которого сосредоточена в одной точке.
M = –(mg sin φ) d. |
Здесь d – расстояние между осью вращения и центром масс C.
20.Физический маятник- твердое тело совершающее колебания под действием силы тяжести относительно точки подвела, не проходящие через центр масс тела.
M = –m g dφ.
21.
Затуханием колебаний называется постепенное ослабление колебаний с течением времени, обусловленное потерей энергии колебательной системой.
22.вынужденные колебания
Возникают в системе под действием периодического внешнего воздействия (напр., вынужденные колебания маятника под действием периодической силы, вынужденные колебания в колебательном контуре под действием периодической электродвижущей силы). Если частота воздействия приближается к частоте собственных колебаний системы, наступает резонанс.
Резон а нс - явление резкого возрастания амплитуды вынужденных колебаний в какой-либо колебательной системе, наступающее при приближении частоты периодического внешнего воздействия к некоторым значениям, определяемым свойствами самой системы.
23. Абсолютно упругий удар — столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию (подчеркнем, что это идеализированный случай).
Абсолютно неупругий удар — столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое. Продемонстрировать абсолютно неупругий удар можно с помощью шаров из пластилина (глины), движущихся навстречу друг другу.
Если массы шаров т 1 и т 2, их скорости до удара v1 и v2, то, используя закон сохранения импульса, можно записать
где v — скорость движения шаров после удара. Тогда
Если шары движутся навстречу друг другу, то они вместе будут продолжать двигаться в ту сторону, в которую двигался шар, обладающий большим импульсом. В частном случае, если массы шаров равны (т 1= т 2), то
24. Опыт показывает, что все тела, освобожденные от действия внешних сил, движутся друг относительно друга равномерно и прямолинейно. Отсюда вытекает, что существуют системы отсчета, в которых закон инерции допускает ньютоновскую формулировку — свободное тело движется с постоянной скоростью. Такие системы отсчета называются инерциальными. Нетрудно понять, что две инерциальные системы отсчета движутся одна относительно другой равномерно и прямолинейно. Все другие системы отсчета будут неинерциальными характерной их особенностью является кажущееся нарушение закона инерции. Так, например, относительно Земли Солнце движется по окружности; в то же время не существует сил, которые заставляют его отклоняться от прямолинейного движения. Стало быть, в системе отсчета, связанной с Землей, ньютоновская формулировка закона инерции теряет силу.
25. Относительно инерциальной системы отсчета Земля совершает суточное вращение около оси с угловой скоростью
По этой причине связанная с Землей система отсчета будет неинерциальной. В этой системе приобретают вполне реальное значение центробежные и кориолисовы силы инерции.
Силы инерции и силы тяготения схожи друг с другом: и те и другие пропорциональны массе тела, на которое они действуют, и поэтому ускорения, сообщаемые данному телу как силами тяготения, так и силами инерции, не зависят от массы данного тела. Поэтому, наблюдая в данной системе отсчета за движением тела под действием сил и не зная, является ли данная система инерциальной, нельзя различить, имеем ли мы дело с силой тяготения или с силой инерции.
26. Упругие волны
Упругие возмущения, распространяющиеся в твёрдой, жидкой и газообразной средах. Например, Волны, возникающие в земной коре при землетрясениях, звуковые и ультразвуковые волны в жидкостях и газах и др. При распространении У. в. происходит перенос энергии упругой деформации в отсутствии потока вещества, который имеет место только в особых случаях, например при акустическом ветре. Всякая гармоническая У. в. характеризуется амплитудой и частотой колебания частиц среды, длиной волны, фазовой и групповой скоростями, а также законом распределения смещений и напряжений по фронту волны. Особенность У. в. состоит в том, что их фазовая и групповая скорости не зависят от амплитуды и геометрии волны (плоская, сферическая, цилиндрическая волны).
В физике мы имеем дело с волнами различной природы: механическими, электромагнитными и т.д. Несмотря на отличия, эти волны имеют много общих черт. Волны, рассматриваемый параметр которых (смещение молекул, механическое напряжение, и т.д.) изменяется периодически вдоль оси распространения, называются продольными волнами. Если колебания происходят перпендикулярно оси распространения волны (как у электромагнитных волн, например), то такие волны называются поперечными.
27. Стоячие волны, волны, возникающие вследствие интерференции волн, распространяющихся во взаимно противоположных направлениях. Практически Стоячие волны возникают при отражениях волн от преград и неоднородностей в результате наложения отражённой волны на прямую.
Релятивистская механика
Релятивистская механика, раздел теоретической физики, рассматривающий классические законы движения тел (частиц) при скоростях движения v, сравнимых со скоростью света. Р. м. основана на теории относительности. Основные уравнения Р. м. — релятивистское обобщение второго закона Ньютона и релятивистский закон сохранения энергии-импульса — удовлетворяют требованиям принципа относительности Эйнштейна. Из них, в частности, следует, что скорость материальных объектов не может превышать скорости света в вакууме с. При v << с Р. м. переходит в классическую механику Ньютона.
Первый постулат Эйнштейна.
Законы, по которым изменяются состояния физических систем, не зависят от того, к которой из двух координатных систем, движущихся относительно друг друга равномерно и прямолинейно, эти изменения состояния относятся ".
Второй постулат Эйнштейна.
«Свет в пустоте всегда распространяется с определенной скоростью Сo, не зависящей от состояния движения излучающего тела»
" Каждый луч света движется в "покоящейся" системе координат с определенной скоростьюСo, независимо от того, испускается ли этот луч света покоящимся или движущимся телом "
29. Понятие одновременности
В свете новых представлений меняются соотношения, связывающие две равномерно движущиеся системы отсчета. Будут ли, например, два события одновременными, если их наблюдать из различных систем отсчета?
30. Основной закон релятивистской динамики материальной точки.
В силу однородности пространства в релятивистской механике выполняется закон сохранения релятивистского импульса: релятивистский импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени. Часто вообще не оговаривают, что рассматривают релятивистский импульс, так как если тела движутся со скоростями, близкими к с, то можно использовать только релятивистское выражение для импульса.
31. Закон взаимосвязи (пропорциональности) массы и энергии: полная энергия системы равна произведению ее массы на квадрат скорости света в вакууме. Отметим, что в полную энергию Е не входит потенциальная энергия тела во внешнем силовом поле.
33. Закон всемирного тяготения
Все тела притягиваются друг к другу с силой, прямо пропорциональной произведениям масс и обратно пропорциональной квадрату расстояния между ними.
34.Идеальный газ, теоретическая модель газа, в которой пренебрегается взаимодействием частиц газа (средняя кинетическая энергия частиц много больше энергии их взаимодействия).
Различают классический И. г. (его свойства описываются законами классической физики) и квантовый И. г., подчиняющийся законам квантовой механики.
35. Давление идеального газа на основе молекулярно-кинетической теории
Молекулярная физика и термодинамика изучают свойства и поведение макроскопических систем, т.е. систем, состоящих из огромного числа атомов и молекул. Типичные системы, с которыми мы сталкиваемся в повседневной жизни, содержат около 1025 атомов.
При исследовании таких систем важнейшими являются макроскопические величины, непосредственно измеряемые опытным путём и характеризующие свойства всей совокупности молекул в целом. Учитывая необычайную сложность макросистем, следует начать изучение с наиболее простых объектов – систем, состояние которых не меняется со временем. Состояние макроскопической системы, в котором она может находится неопределённо долгое время, называется равновесным (о нём говорят также, как о состоянии теплового равновесия).
36. Молекулярно-кинетическое толкование абсолютной температуры
Средняя квадратичная скорость молекул. Vср.кв.=Ö (3kT/M), где k=1,38× 10-23 - постоянная Больцмана, T - температура.
Молекулярно-кинетическое толкование абсолютной температуры. С точки зрения молекулярно-кинетической теории абсолютная температура есть величина, пропорциональная средней энергии поступательного движения молекулы. <e пост>=3/2kT.
37. Число степеней свободы молекул.
В механике вводилось понятие числа степеней свободы: это число независимых переменных (координат), которые полностью определяют положение системы в пространстве. В некоторых задачах молекулу одноатомного газа (рис. 1, а) рассматривают как материальную точку, которой задают три степени свободы поступательного движения. При этом не учитывается энергия вращательного движения.
Важной характеристикой термодинамической системы является ее внутренняя энергия U — энергия хаотического (теплового) движения микрочастиц системы (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Из этого определения следует, что к внутренней энергии не относятся кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях.
Дата добавления: 2015-01-30; просмотров: 110 | Поможем написать вашу работу | Нарушение авторских прав |
<== предыдущая лекция | | | следующая лекция ==> |
Философия истории | | | Соотношение конституционного, публичного, частного, государственного права. |