Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

И, следовательно,

Читайте также:
  1. Б) если ВНП мало, следовательно, мало производство, оборудование простаивает, нет стимула для закупки нового оборудования.
  2. Следовательно, будет иметь место циклический дефицит бюджета.
  3. Следовательно, для успешного формирования и функционирования системы бюджетного управления необходимо соблюдение ряда обязательных условий.
  4. Следовательно, социальные нормы — это правила, регулирующие поведение людей и деятельность создаваемых ими организаций в отношениях друг с другом.
  5. Следовательно, экономическая функция государства в долгосрочной перспективе определяется особенностями развития производительных сил.

Относительность движения

Движущиеся тела изменяют своё положение относительно других тел. Положение автомобиля, мчащегося по шоссе, изменяется относительно указателей на километровых столбах, положение корабля, плывущего в море недалеко от берега, меняется относительно береговой линии, а о движении самолёта, летящего над землей, можно судить по изменению его положения относительно поверхности Земли. Механическое движение — это процесс изменения относительного положения тел в пространстве с течением времени. Можно показать, что одно и то же тело может по-разному перемещаться относительно других тел.

Таким образом говорить о том, что какое-то тело движется, можно лишь тогда, когда ясно, относительно какого другого тела — тела отсчета, изменилось его положение.

При́нцип относи́тельности — фундаментальный физический принцип, согласно которому все физические процессы в инерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.

Отсюда следует, что все законы природы одинаковы во всех инерциальных системах отсчёта.[1]

Различают принцип относительности Эйнштейна (который приведён выше) и принцип относительности Галилея, который утверждает то же самое, но не для всех законов природы, а только для законов классической механики, подразумевая применимость преобразований Галилея, оставляя открытым вопрос о применимости принципа относительности к оптике и электродинамике.

В современной литературе принцип относительности в его применении к инерциальным системам отсчета (чаще всего при отсутствии гравитации или при пренебрежении ею) обычно выступает терминологически как лоренц-ковариантность (или лоренц-инвариантность).

одно и то же движение в различных системах отсчета может выглядеть совершенно по-разному. Для описания движения часто необходимо бывает знать, как при переходе из одной системы в другую меняется мгновенная скорость точки. Правило это и представляет собой содержание так называемой теоремы о сложении скоросте

Рис. 10

Итак, рассмотрим две системы отсчета P и Q, произвольно движущиеся относительно друг друга. Примем условно одну из них, например P, за неподвижную и назовем лабораторной системой, а другую Q, будем считать движущейся. Пусть в подвижной системе точка имеет некую мгновенную скорость, которую назовем относительной скоростью и обозначим как vотн. Чему будет равна ее скорость в лабораторной системе (так называемая абсолютная скорость) vабс, если известно, как движется в данный момент подвижная система относительно неподвижной?

Для ответа на этот вопрос нарисуем два положения 1 и 2 системы Q и точки в ней, разделенные малым интервалом времени t (рис. 10; чтобы не загромождать рисунок, на нем изображено лишь тело отсчета системы Q). Здесь AB= rотн вектор относительного перемещения точки за время t в системе Q. АA перемещение той точки подвижной системы (относительно лабораторной), с которой совпадает в данный момент движущаяся точка; оно называется переносным перемещением и обозначается как rпер. И наконец, АB = rабс абсолютное перемещение точки в системе Р. Из рис. 10, очевидно, rабс= rпер+А B. Разделим теперь это соотношение на t и перейдем к пределу при. При этом по определению скорости

, (15)

где vпер так называемая переносная скорость. Что же касается перемещения А B, то нетрудно видеть, что при безграничном уменьшении t положение 2 системы Q сколь угодно близко подходит к положению 1, а потому вектор А B (уменьшаясь по величине) стремится совпасть с вектором АВ= rотн. Стало быть,

, (16)

и, следовательно,

vабс=vпер+vотн. (17)

Это и есть содержание теоремы о сложении скоростей: абсолютная скорость точки равна векторной сумме ее переносной и относительной скоростей.

Отметим, что приведенный вывод теоремы справедлив в самом общем случае произвольного движения подвижной системы, включая и ее вращение. При этом различные точки Q будут иметь разные скорости. В (17) же входит скорость vпер вполне определенной точки этой системы, а именно той, с которой совпадает в данный момент движущаяся частица.

Пример. С какой минимальной скоростью u должен двигаться автомобиль под дождем, чтобы его заднее стекло оставалось сухим? Скорость капель дождя вертикальна и равна v, стекло наклонено к вертикали под углом (рис. 11).

рис.11

Найдем скорость капель дождя в движущейся системе координат, связанной с автомобилем. В соответствии с нашими определениями v абсолютная, а u переносная скорости капель. Из (17) их скорость относительно автомобиля

vотн= vабс-vпер= v - u = v +(- u).

Таким образом, в системе, связанной с движущимся автомобилем, дождь окажется уже косым (см. рис.11), причем угол наклона vотн к вертикали тем больше, чем выше скорость автомобиля. Чтобы заднее стекло оставалось сухим, этот угол должен быть, очевидно, не меньше. Отсюда получаем величину минимальной скорости автомобиля u=vtg.

Замечание 1. Напомним еще раз, что мы рассматриваем нерелятивистские, т.е. далекие от световых, скорости. В общем случае произвольных скоростей формулы их преобразования из одной системы в другую заметно усложняются. Из этих формул, в частности, следует, что если vотн=c и vпер=c, где с скорость света, то vабс равна не 2с, как это получалось бы в ньютоновой механике по формуле (17), а тоже с. Движение со скоростями, большими скорости света, невозможно. При vотн, vпер<<c релятивистский закон сложения скоростей, естественно, переходит в (17).

Замечание 2. Наряду с вопросами преобразования скоростей встают аналогичные вопросы с трансформацией ускорений. Будет ли абсолютное ускорение равно сумме относительного и переносного? Да, показывают расчеты, но только при условии, что движущаяся система не вращается.

При наличии вращения формула для ускорений, аналогичная (17), перестает быть справедливой: в ее правой части появляется еще одно слагаемое так называемое кориолисово ускорение, пропорциональное угловой скорости вращения подвижной системы.

3. Кинематика – важный раздел теоретической механики, в котором изучают законы движения материальной точки и абсолютно твердого тела с геометрической точки зрения, без учёта их инерционных характеристик (массы) и действующих на них сил

Кинематику подразделяют на кинематику точки и кинематику абсолютно твердого тела. Если при изучении движения тела его формой и размерами можно пренебречь, то такое тело отождествляют с материальной точкой, т.е. с геометрической точкой, в которой вся масса тела условно считается сосредоточенной. В других случаях тело рассматривают как абсолютно твердое, форму и размеры которого принимают неизменяемыми. Абсолютно твердым телом называют такое тело, расстояние между любыми двумя точками которого при его движении не изменяется.




Дата добавления: 2015-01-30; просмотров: 153 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав