Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Математика и математическое образование в современном мире

Читайте также:
  1. A. Образование карбоксигемоглобина
  2. I. Образование Монгольской империи.
  3. XIV. Светские наука, культура, образование
  4. А Профессиональное образование, трудовая деятельность, социальная адаптация лиц с нарушениями слуха и зрения
  5. А) ОБРАЗОВАНИЕ СОКРОВИЩ
  6. Анализ финансовой политики Российской Федерации на современном этапе.
  7. Антидискриминационная направленность социальной работы. Эйджизм, сексизм и инвалидизм в современном обществе.
  8. Антителообразование, первичный и вторичный ответ.
  9. Античная математика. Метод дедукции. Теоремы и аксиомы.
  10. Антропологические основания и социокультурная природа образования. Образование как ценность

"No star wars --- no mathematics", -- говорят американцы. Тот прискорбный факт, что с (временным?) прекращением военного противостояния математика, как и все фундаментальные науки, перестала финансироваться, является позором для современной цивилизации, признающей только "прикладные" науки1, ведущей себя совершенно подобно свинье под дубом.

На самом деле никаких прикладных наук не существует и никогда не существовало, как это отметил более ста лет назад Луи Пастер (которого трудно заподозрить в занятиях, не нужных человечеству). Согласно Пастеру, существуют лишь приложения науки.

Опыты с янтарем и кошачьим мехом казались бесполезными правителям и военачальникам XVIII века. Но именно они изменили наш мир после того, как Фарадей и Максвелл написали уравнения теории электромагнетизма. Эти достижения фундаментальной науки окупили все затраты человечества на нее на сотни лет вперед. Отказ современных правителей платить по этому счету -- удивительно недальновидная политика, за которую соответствующие страны, несомненно, будут наказаны технологической и следовательно экономической (а также и военной) отсталостью.

Человечество в целом (перед которым ведь стоит тяжелейшая задача выживания в условиях мальтузианского кризиса) должно будет заплатить тяжелую цену за близоруко-эгоистическую политику составляющих его стран.

Математическое сообщество несет свою долю ответственности за повсеместно наблюдаемое давление со стороны правительств и общества в целом, направленное на уничтожение математической культуры как части культурного багажа каждого человека и в особенности на уничтожение математического образования.

Выхолощенное и формализованное преподавание математики на всех уровнях сделалось, к несчастью, системой. Выросли целые поколения профессиональных математиков и преподавателей математики, умеющих только это и не представляющих себе возможности какого-либо другого преподавания математики.

Наиболее характерными приметами формализованного преподавания является изобилие немотивированных определений и непонятных (хотя логически безупречных) доказательств. Отсутствие примеров, отсутствие анализа предельных случаев и предела применимости математических теорий, отсутствие чертежей и рисунков -- столь же постоянный недостаток математических текстов, как и отсутствие внематематических приложений и мотивировок понятий математики.

Уже Пуанкаре отмечал, что есть только два способа научить дробям -- разрезать (хотя бы мысленно) либо пирог, либо яблоко. При любом другом способе обучения (аксиоматическом или алгебраическом) школьники предпочитают складывать числители с числителями, а знаменатели -- со знаменателями.

Математика является экспериментальной наукой -- частью теоретической физики и членом семейства естественных наук. Основные принципы построения и преподавания всех этих наук применимы и к математике. Искусство строгого логического рассуждения и возможность получать этим способом надежные выводы не должно оставаться привилегией Шерлока Холмса -- каждый школьник должен овладеть этим умением. Умение составлять адекватные математические модели реальных ситуаций должно составлять неотъемлемую часть математического образования. Успех приносит не столько применение готовых рецептов (жестких моделей), сколько математический подход к явлениям реального мира. При всем огромном социальном значении вычислений (и computer science), сила математики не в них, и преподавание математики не должно сводиться к вычислительным рецептам.

В истории России был премьер-министр с математическим образованием (окончивший Санкт-Петербургский университет по математике в школе Чебышева). Вот как он описывает разницу между мягким и жестким математическим моделированием2:
Между математиками есть двоякого рода люди: 1) математики-философы, т. е. математики высшей математической мысли, для которых цифры и исчисления есть ремесло; для этого рода математиков цифры и исчисления не имеют никакого значения, их увлекают не цифры и исчисления, а сами математические идеи. Одним словом, это математики, так сказать, чистой философской математики; 2) напротив, есть такие математики. которых философия математики, математические идеи не трогают, которые всю суть математики видят в исчислениях, цифрах и формулах...
Математики-философы, к которым принадлежу и я, относятся всегда с презрением к математикам-исчислителям, а математики-исчислители, среди которых есть много ученых весьма знаменитых, смотрят на математиков-философов как на людей в известном смысле "тронутых".

Загрузка...

Сейчас мы знаем, что описанные Витте различия имеют физиологическое происхождение. Наш мозг состоит из двух полушарий. Левое отвечает за умножение многочленов, языки, шахматы, интриги и последовательности силлогизмов, а правое -- за пространственную ориентацию, интуицию и все необходимое в реальной жизни. У "математиков-исчислителей" по терминологии Витте гипертрофировано левое полушарие, обычно за счет недоразвития правого. Это заболевание составляет их силу (вспомним "Защиту Лужина" Набокова). Но доминирование математиков этого типа и привело к тому засилью аксиоматическо-схоластической математики, особенно в преподавании (в том числе и в средней школе), на которое общество естественно и законно реагирует резко отрицательно. Результатом явилось повсеместно наблюдаемое отвращение к математике и стремление всех правителей отомстить за перенесенные в школе унижения ее изничтожением.

Мягкое моделирование требует гармоничной работы обоих полушарий мозга. После окончания университета Витте не нашел работы по специальности и принял предложение частной компании стать начальником дистанции на Юго-Западной железной дороге. Для занятия этого поста ему пришлось по неделе простажироваться в должности каждого из своих подчиненных (стрелочника, путевого обходчика, багажного раздатчика, билетного кассира, кочегара, машиниста, начальника станции -- неоценимый опыт для будущего премьер-министра.

Однажды царский поезд, следующий в Крым, был замедлен по приказу Витте на его дистанции. Несмотря на возмущение Александра III, машинист подчинился не его приказу, а приказу своего начальника дистанции. Когда поезд перешел на следующую, уже не подчинявшуюся Витте, дистанцию, скорость была, естественно, повышена. Вскоре царский поезд сошел с рельсов и опрокинулся (катастрофа у станции Борок). Царь запомнил имя непокорного начальника дистанции, и Витте был назначен министром (кажется, путей сообщения), а впоследствии стал и премьер-министром. С его именем связана вся грандиозная эпоха "развития капитализма в России", в том числе -- строительство действующей и сейчас сети железных дорог.

Но Витте лучше разбирался в реальной жизни страны и в проблемах экономики и техники, чем в политических интригах (к которым больший талант имеют люди левополушарные). С приходом к власти деятелей типа Распутина он был отправлен в отставку. Витте вновь призывался к власти для ликвидации критических ситуаций, созданных политиками (русско-японская война, революция 1905 года), я даже предполагаю, что если бы Витте оставался руководителем России в течение следующего десятилетия, то наша история была бы совсем иной: не было бы ни мировой войны, ни революции и мы жили бы сейчас, как Финляндия или Швеция...

Конечно, сила Витте заключалась вовсе не в применении какой-либо математики ("исчисления"), а в том способе мышления, который он называет "математикой-философией" и который заставляет человека с математическим образованием думать о всех реалиях окружающего мира с помощью (сознательного или бессознательного) мягкого математического моделирования.

Идея о необходимости этого рода мышления для успеха в любой экономической или производственной деятельности (исключая, быть может, политические интриги) была хорошо понята уже сто лет назад3:
Не пользующаяся математическими символами человеческая логика зачастую запутывается в словесных определениях и делает вследствие этого ошибочные выводы -- и вскрыть эту ошибку за музыкою слов иногда стоит огромного труда и бесконечных, часто бесплодных, споров.

К сожалению, и сейчас остаются актуальными слова классика математической экономики Парето4:
Экономисты, не знающие математики, находятся в положении людей, желающих решить систему уравнений, не зная ни того, что она из себя представляет, ни того даже, что представляет из себя каждое входящее в нее единичное уравнение.

Выводы: планируемое во всех странах подавление фундаментальной науки и, в частности, математики (по американским данным на это им потребуется лет 10-15) принесет человечеству (и отдельным странам) вред, сравнимый со вредом, который принесли западной цивилизации (и Испании) костры инквизиции.

Математическое образование должно составлять неотъемлемую часть культурного багажа каждого школьника. Но оно не должно никоим образом сводиться к рецептурам (будь то таблица умножения или Windows 95).

Основной целью математического образования должно быть воспитание умения математически исследовать явления реального мира, умения, так хорошо описанного Витте в его характеристике "математики-философии" и так блестяще использованного им в вовсе не математической деятельности. Искусство составлять и исследовать мягкие математические модели является важнейшей составной частью этого умения.

 

1Непрекращающееся финансирование псевдоспиритических наук вроде парапсихологии и антиисторического вздора академика А. Т. Фоменко (в 1997 году зам. академика-секретаря отделения математики РАН) еще ждет своего объяснения.

2С. Ю. Витте. Воспоминания, т. 3, гл. 5.

3В. Ф. Арнольд. Политико-экономические этюды. Одесса, изд. Распопова, 1904, 113 с., с. 5.

4V. Pareto. Anwendung der Mathematik auf Nationalokonimie. Encyclopedie der Mathematischen Wissenschaften, Band I, Heft 7, S. 1114

 

 

Литература

[1] В. И. Арнольд. Теория катастроф. М.: Наука, 1990, 128 с.

[2] Т. Постон, И. Стюарт. Теория катастроф и ее приложения. М.: Мир, 1980, 608 с.

[3] Л. Э. Эльсгольц. Дифференциальные уравнения и вариационное исчисление. Изд. 2-е. М.: Наука, 1969, 424 с.

[4] Л. С. Понтрягин. Обыкновенные дифференциальные уравнения. Изд. 5-е. М.: Наука, 1982, 331 с.

[5] Р. С. Гутер, А. Р. Янпольский. Дифференциальные уравнения. Изд. 2-е. М.: Высшая школа, 1976, 304 с.

[6] М. В. Федорюк. Обыкновенные дифференциальные уравнения. Изд. 2-е. М.: Наука, 1985, 448 с.

[7] В. В. Амелькин. Дифференциальные уравнения в приложениях. М.: Наука, 1987, 160 с.

[8] Н. П. Векуа. Некоторые вопросы теории дифференциальных уравнений и приложения в механике. М.: Наука, 1987, 256 с.

[9] И. Г. Петровский. Лекции по теории обыкновенных дифференциальных уравнений. Изд. 6-е. М.: Наука, 1970, 279 с.

[10] Д. Эрроусмит, К. Плейс. Обыкновенные дифференциальные уравнения. Качественная теория с приложениями Пер. с англ. под ред. Н. М.: Мир, 1986, 240 с.

[11] В. И. Арнольд. Обыкновенные дифференциальные уравнения. М.: Наука, 1971, 240 с.

Автор благодарит Д. С. Шмерлинга за пополнение списка литературы.

 


Дата добавления: 2015-02-16; просмотров: 12 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2018 год. (0.011 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав