Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Микрофлюидика

Микрофлюидика - развивающееся междисциплинарное направление исследований, которое позволяет делать очень многое - от аналогового компьютера, устойчивого к электромагнитному импульсу ядерного взрыва, до совершенных полифункциональных биосенсорных чипов, lab-on-chip и биосовместимых поверхностей медицинских имплантантов. Ее развитие в последнее время все чаще связывают и с развитием нанотехнологий. Ниже приведена одна из фундаментальных работ, которая обещает новые громкие достижения в этой уникальной области...

Гидрофобизация твёрдой поверхности снижает сопротивление течению жидкостей вблизи неё благодаря гидрофобному скольжению. К сожалению, этот эффект проявляется только в наномасштабе и не может существенно повлиять на потоки в устройствах для микрофлюидики. Куда более эффективное уменьшение вязкого сопротивления, проявляющееся и в микромасштабе, может быть достигнуто при использовании супергидрофобных поверхностей.

Это связано с тем, что такая поверхность содержит захваченные микро- или нанотекстурой (узором) газовые участки, вдоль которых жидкость течёт практически без трения (гигантское скольжение). Однако супергидрофобная поверхность гетерогенна, включая в себя твёрдые гидрофобные участки с малым скольжением, и, в общем случае, анизотропна. Поэтому расчёт и оптимизация эффективного скольжения по супергидрофобной текстуре представляет собой чрезвычайно сложную математическую задачу. В результате до сегодняшнего дня проблема была решена только для отдельных простейших случаев, что ограничивало теоретические рекомендации по рациональному дизайну супергидрофобных текстур и их использование в микро- и нанофлюидике.

Интернациональным коллективом исследователей в составе Франсуа Фёйбуа (Парижская высшая индустриальная школа физики и химии, Франция), Мартина Базанта (Университет Стэнфорда и Массачусеттский технологический институт, США) и Ольги Виноградовой (Институт физической химии и электрохимии им. А.Н.Фрумкина РАН, Россия) было предложено общее решение задачи об эффективном скольжении по супергидрофобным стенкам, которое позволило описать и оптимизировать течение в тонком канале для микрофлюидики. Вместо точного анализа течения жидкости вблизи гетерогенных участков авторы предложили рассчитать эффективную проницаемость системы с использованием методов современной теории гетерогенных сред и затем искать решение для эффективной длины скольжения в форме математических границ.

Среди всех возможных супергидрофобных текстур, анизотропная упорядоченная ламеллярная («страйпы») обеспечивает максимально допустимое (или минимальное) скольжение в случае параллельной (или перпендикулярной) ориентации относительно градиента приложенного давления. Для изотропных текстур авторы предсказали более узкую «вилку» для эффективного скольжения. Интересно, что граница максимального скольжения для изотропных стенок супергидрофобных каналов соответствует точным решениям для известных в других областях физики гетерогенных структур: фракталу Хашина-Штрикмана и периодической сотовой (что, в частности, предлагает использование графена). Замечательным результатом работы является то, что для некоторых каналов «вилка» разрешённых значений эффективного скольжения оказывается настолько узкой, что метод математических границ позволяет найти практически точное решение задачи, избегая сложных гидродинамических расчётов. Помимо этого, авторы показали, что, управляя параметрами поверхностной текстуры тонкого канала, можно достигнуть состояния «сверхтекучести» водных растворов, так как из-за гигантского эффективного скольжения течение в канале становится плоским («plug-flow»), а вязкое трение практически полностью отсутствует

3. Как используются нанобиотехнологии для решения экологических проблем?
Методы нанотехнологий открывают новые пути решения проблем охраны окружающей среды. В первую очередь речь идет об использовании наноустройств в системах исследования и контроля продуктов и отходов различных химических производств, а также о переработке бытового мусора и очистке загрязненных водоемов. Можно сослаться на приводимые ниже примеры использования методов нанотехнологий в области экологии и энергетики:
Сокращение отходов производства и повышение энергетического КПД. Наиболее заметные успехи достигнуты в разработке новых методов катализа, где использование наноразмерных реагентов позволяет повысить эффективность каталитических реакций (скорость, выход) как в гомогенных, так и в гетерогенных системах. Использование наноразмерных материалов (например, аэрогеля V2O5) в катодах литиевых аккумуляторов значительно повышает их емкость и срок службы.
Экологически безопасные композиционные материалы. Совместимость композиционных материалов с наноразмерными инородными включениями открывает возможность производства высококачественных материалов специального назначения (например, для систем фильтрования). На основе таких композитов можно создавать системы, отличающиеся повышенной стойкостью к воздействию окружения, длительным сроком службы, малым воздействием на окружающую среду.
Переработка отходов. Наноматериалы находят все большее применение в процессах переработки и обезвреживания отходов: от окисления органических загрязнителей с помощью наночастиц TiO2 до связывания атомов тяжелых металлов наноразмерными поглотителями. Во многих случаях в качестве агентов окисления могут использоваться активированные облучением частицы (в растворах или аэрозолях). Обнаружено, что наночастицы TiO2, подвергнутые УФ-облучению, могут очищать воздух от различных загрязнителей, включая микроорганизмы и опасные органические соединения. Наноразмерные частицы после соответствующей обработки их поверхности лигандами и реагентами могут эффективно связывать атомы тяжелых металлов и резко снижать коррозию металлических поверхностей. Способность наноматериалов поглощать атомы тяжелых металлов может быть использована в переработке ядерных отходов.
Зад. Использования новых подходов в нанодиагностике для экологических целей.




Дата добавления: 2015-02-16; просмотров: 51 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав