Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Выходной сигнал

Читайте также:
  1. II. Скорость света в вакууме одинакова для всех инерциальных систем отсчета. Она не зависит ни от скорости источника, ни от скорости приемника светового сигнала.
  2. Архитектура сигнального процессора
  3. Билет 19. Способы подачи и назначение сигналов при взрывных работах.
  4. В местах, где движение регулируется, пешеходы должны руководствоваться сигналами регулировщика или светофора.
  5. Входные сигналы
  6. Входным светофором подаётся сигнал: Стой! Запрещается проезжать сигнал.Один красный огонь.
  7. ВЫХОДНОЙ ДЕНЬ
  8. Выходным светофором подаётся сигнал: Стой! Запрещается проезжать сигнал.Один красный
  9. Генераторы группы Г2 генераторы шумовых сигналов

Выходной сигнал адресуется другой клетке или одновременно нескольким клеткам и в подавляющем большинстве случаев представляет собой выделение химического посредника - нейротрансмиттера или медиатора. В пресинаптических окончаниях аксона заранее запасённый медиатор хранится в синаптических пузырьках, которые накапливаются в специальных участках - активных зонах. Когда потенциал действия добирается до пресинаптического окончания, содержимое синаптических пузырьков путём экзоцитоза опорожняется в синаптическую щель.

Химическими посредниками передачи информации могут служить разные вещества: небольшие молекулы, как, например, ацетилхолин или глутамат, либо достаточно крупные молекулы пептидов - все они специально синтезируются в нейроне для передачи сигнала. Попав в синаптическую щель, медиатор диффундирует к постсинаптической мембране и присоединяется к её рецепторам. В результате связи рецепторов с медиатором изменяется ионный ток через каналы постсинаптической мембраны, а это приводит к изменению значения потенциала покоя постсинаптической клетки, т.е. в ней возникает входной сигнал - в данном случае постсинаптический потенциал.

Таким образом, почти в каждом нейроне, независимо от его величины, формы и занимаемой в цепи нейронов позиции, можно обнаружить 4 функциональные области: локальную рецептивную зону, интегративную, зону проведения сигнала и выходную или секреторную зону (Рис. 3.3).

 

Глия

Во всех органах человеческого тела, кроме мозга, функционирующие клетки удерживаются вместе межклеточным веществом соединительной ткани. В нервной системе эту роль выполняет глия (от греч. глия - клей), клетки которой образуются из общих с нейронами предшественниц на раннем этапе развития мозга. Глия создаёт опору для нейронов, объединяет отдельные элементы нервной системы, но, в то же время, изолирует друг от друга разные группы нейронов, а также большую часть их аксонов. Тем самым она формирует структуру мозга. Численность клеток глии превышает количество нейронов в мозгу приблизительно в 10 раз. Эти клетки отличаются друг от друга по внешнему виду и по выполняемой функции.

Самыми распространёнными среди клеток глии являются астроциты, например, в мозолистом теле они составляют 1/4 всех клеток глии. У астроцита неправильной, звёздчатой формы тело с многочисленными и относительно длинными отростками, одни из которых направлены к нейронам, а другие - к кровеносным капиллярам. Эти отростки расширяются на концах, образуя т.н. астроцитарную ножку. На поверхности капилляра отростки соседних астроцитов плотно смыкаются друг с другом и практически полностью обвёртывают кровеносный сосуд. Подобная изоляция сосуда является одним из способов формирования гематоэнцефалического барьера - границы между кровью и нервной тканью, закрытой для многих находящихся в крови веществ.

Другие отростки астроцита почти целиком обёртывают тела нейронов. Если нейрон возбуждается длительно, вокруг него повышается концентрация ионов калия, а это может уменьшить возбудимость соседних нейронов. Астроциты предупреждают такую возможность, поглощая излишки калия, - тем самым они выполняют функцию буфера. Некоторые клетки глии при этом деполяризуются, а поскольку они связаны между собою щелевыми контактами, между деполяризованными и находящимися в покое клетками возникает ток. Это, однако, не приводит к возбуждению, так как в мембране клеток глии очень мало потенциалзависимых каналов для натрия или кальция. Несмотря на то, что повышение концентрации ионов калия у астроцитов изменяет некоторые их свойства, в настоящее время нет достаточных оснований считать их прямыми участниками переноса нервных импульсов.

Две другие разновидности клеток глии: олигодендроциты и шванновские клетки похожи друг на друга по внешнему виду и по выполняемой функции. У них маленькое тело и относительно небольшие, как бы расплющенные отростки, которые многократно обёртывают аксоны нейронов, тем самым обеспечивая им изолирующий миелиновый футляр. Миелин - это жироподобное вещество, которое выполняет роль электроизолятора. При утрате миелиновой оболочки вследствие, например, демиелинизирующих заболеваний, передача сигналов из одной части мозга в другую серьёзно нарушается, что обычно приводит к инвалидности.

Олигодендроциты создают миелиновую изоляцию аксонов в центральной нервной системе, причём каждый олигодендроцит обслуживает, как правило, несколько аксонов. Шванновские клетки покрывают миелином волокна периферической нервной системы, причём каждая шванновская клетка занимается только одним аксоном.

В белом и сером веществе мозга рассеяны клетки микроглии. В отличие от других клеток глии в мозгу они - чужаки, пришельцы. Они образуются из моноцитов крови, сумевших пройти сквозь стенки капилляров в мозг, чтобы в нём поселиться (в других тканях такие оседлые моноциты называются макрофагами). Подобно макрофагам иных тканей клетки микроглии выполняют роль мусорщиков: они захватывают и разрушают обломки разрушающихся клеток, эта работа становится особенно заметной на фоне повреждений мозга.

Особую роль клетки глии выполняют, по-видимому, во время развития мозга. Некоторые их разновидности регулируют направление перемещения нейронов в определённые регионы растущего мозга, а также направление роста аксонов. Другие клетки глии возможно участвуют в питании нервных клеток путём регуляции кровотока, а тем самым транспорта глюкозы и кислорода.

 

Резюме

В выдающемся разнообразии индивидуальных признаков отдельных нейронов обнаруживаются общие черты, которые позволяют классифицировать нервные клетки по их строению и выполняемой функции. Электрические сигналы распространяются по нейрону только в одном направлении. В каждом нейроне можно выделить четыре морфологические области, выполняющие разные функциональные задачи. В каждой из этих областей возникает особая разновидность сигналов, используемых для передачи информации. Клетки глии, так же, как и нейроны, различаются по своему строению и выполняемой функции.

 




Дата добавления: 2015-02-16; просмотров: 116 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав