Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

КРИТИЧЕСКОЕ НАПРЯЖЕНИЕ. ПРЕДЕЛЫ ПРИМЕНИМОСТИ ФОРМУЛЫ ЭЙЛЕРА

Читайте также:
  1. А) налоги — объективная необходимость, но их пределы — проблема, поскольку они непосредственно сказываются на эффективности частного бизнеса;
  2. Виды соучастников. Основания и пределы уголовной ответственности за совершение преступления в соучастии.
  3. Вопрос 17. Осуществление субъективных гражданских прав: понятие, принципы, способы, пределы. Злоупотребление гражданским правом.
  4. Вопрос 23. Какая категория осужденных может получить разрешение на выезд за пределы колонии?
  5. Вопрос 44. Правовое регулирование: понятие, предмет и пределы.
  6. Вопрос № 13. Характеристика надзора за соблюдением Конституции РФ и исполнением законов: цели, задачи, предмет и пределы.
  7. Выдача лиц для уголовного преследования или исполнения приговора (экстрадиция). Пределы уголовной ответственности лица, выданного РФ.
  8. Выход за пределы ограничений
  9. Вычисление производных. Формулы дифференцирования
  10. Вычисляемые ячейки: формулы, основные операции. 2) word: структура, интерфейс

При осевом нагружении стержня в его поперечных сечениях возникают нормальные напряжения сжатия, которые возрастают по мере увеличения нагрузки. Нормальные напряжения, соответствующие критической силе, называются критическими: , или после подстановки значения критической силы из формулы, .

В последнюю формулу входят две геометрические характеристики площади сечения стержня: минимальный момент инерции и площадь A. Частное от деления представляет собой величину, имеющую единицу площади м2, см2, мм2. Поэтому линейную величину называют минимальным радиусом инерции сечения.

Таким образом, и последняя формула принимает вид или .

Безразмерная величина называется гибкостью стержня. Она характеризует сопротивляемость стержня потере устойчивости; с увеличением гибкости уменьшается сопротивляемость стержня потере устойчивости. Заметим, что гибкость стержня не зависит от материала стержня, а определяется его длиной, формой и размерами сечения.

Определяя значение критической силы, Эйлер исходил из рассмотрения упругой линии изогнутого стержня, поэтому формула справедлива только в пределах применимости закона Гука, инача говоря, до тех пор, пока критическое напряжение не превышает предела пропорциональности материала стержня, т. е. при условии .

Отсюда .

Стоящая в правой части неравенства постоянная для данного материала безразмерная величина называется предельной гибкостью: .

Таким образом, применимость формулы Эйлера определяется условием .

Формула Эйлера применима только в тех случаях, когда гибкость стержня больше или равна предельной гибкости того материала, из которого он изготовлен.

Рисунок 1

Как правило, многие конструкции имеют стержни с гибкостью меньше предельной. Разработку современных методов расчета на усталость таких стержней начал Ф.С.Ясинский, который предложил приближенные формулы для определения критических напряжений за пределом пропорциональности, проанализировав предварительно обширный экспериментальный материал и построив графические зависимости между и для многих материалов. График зависимости от для стержней из пластичного материала (низкоуглеродистой стали) показан на рисунке 1.

В результате исследований подобных графиков стержни условно делятся на три группы. Стержни большой гибкости ( ), для которых критические напряжения определяются по формуле Эйлера. Стержни средней гибкости ( ), для которых критические напряжения определяются по формуле Ясинского , где коэффициенты а и b имеют для каждого материала определенное значение, найденное экспериментально. Некоторые значения этих коэффициентов, а также гибкостей и , в интервале между которыми применима для данного материала формула Ясинского, приведены в таблице.


Дата добавления: 2015-02-16; просмотров: 11 | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2018 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав