Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Алгоритм измерения температуры

Читайте также:
  1. III. Измерения и обработка результатов
  2. Алгоритм
  3. Алгоритм
  4. Алгоритм 2. Пузырьковая сортировка
  5. Алгоритм 5. Сортировка двоичной кучей
  6. Алгоритм 6. Быстрая сортировка
  7. Алгоритм 7. Сортировка подсчетом
  8. Алгоритм вибору завдань для самостійної (дистанційної) роботи студентів
  9. Алгоритм выбора плавких предохранителей
  10. Алгоритм вычисления k-го процентиля

Если по теореме об эквивалентном генераторе электрической цепи левый (по схеме) спай заменить источником напряжения, а затем перенести этот источник к вольтметру, то получим окончательно измерительную цепь, которая используется в большинстве приборов для измерения температуры на основе термопар (рис.4). Величина ЭДС источника Екомп является функцией температуры холодного спая T1. "Холодным спаем" в этом случае являются контакты между медью и железом и медью и константаном. Эти контакты должны иметь одинаковую температуру. Источник Екомп в системе RealLab реализуется программно, а температура, на основании которой вычисляется величина компенсирующей ЭДС, измеряется каким-либо термодатчиком, например, терморезистором, полупроводниковым датчиком или RTD.

Таким образом, алгоритм измерения температуры должен состоять из следующих шагов:

· измерение температуры холодного спая;

· преобразование этой температуры в эквивалентное напряжение на выводах холодного спая термопары, используя градуировочную таблицу термопары или линеаризующее уравнение;

· добавление этого напряжения к измеренному напряжению на выводах термопары;

· преобразование полученного напряжения в температуру используя градуировочную таблицу термопары или линеаризующее уравнение.

Температурная зависимость напряжения на выходе термопары является сильно нелинейной. Поэтому для нахождения температуры по измеренному значению напряжения необходимо использовать таблицу или нелинейную функцию, аппроксимирующую табличные данные. Для аналитической апроксимации табличных значений обычно используют полином вида

, (1)

где V - измеренное напряжение в микровольтах; Т - температура, oС; ao,... an, - коэффициенты полинома, которые индивидуальны для каждого типа термопары. Для ряда стандартных термопар эти коэффициенты установлены стандартом NIST (National Institute of Standards and Technology), опубликованы в монографии [Temperature-Electromotive Force Reference Functions and Tables for the Letter-Designated Thermocouple Types Based on the ITS-90. Natl. Inst. Stand. Technol. Monograph 175; 1993. 630 p.] и приведены в табл.1. Эта таблица получена при условии, что холодный спай термопары находится при температуре 0oС.

Таблица 1

Для обратного перехода, от температуры к напряжению, используют аналогичную полиномиальную аппроксимацию

Сварка проводов, изготовленных из разных металлов, выполняется таким образом, чтобы получилось небольшое по размеру соединение - спай. Провода можно просто скрутить, однако такое соединение ненадежно и имеет большой уровень шумов. Сварку металлов иногда заменяют пайкой, однако верхний температурный диапазон такой термопары ограничен температуров плавления припоя. При температурах, близких к температуре плавления припоя, контакт разнородных металлов в термопаре может нарушаться. Термопары, изготвленные сваркой, выдерживают более высокие температуры, однако химический состав термопары и структура металла в месте сварки могут нарушаться, что приводит к разбросу температурных коэффициентов термопар. Под действием высоких температур может произойти раскалибровка термопары вследствие изменения диффуции компонентов металла в месте сварки. В таких случаях термопару следует откалибровать заново или заменить.

Промышленностью выпускаются термопары трех различных конструкций: с открытым спаем, с изолированным незаземленным спаем и с заземленным спаем. Термопары с открытым контактом имеют малую постоянную времени, но плохую коррозионную стойкость. Термопары двух других тпов применимы для измерения температуры в агрессивных средах.

Особенностью термопар по сравнению с другими типами термодатчиков является то, что температурный коэффициент зависит только от материала, из которого изготовлена термопара и не зависит от ее конструкции (термопары выполняются в форме щупа, проклодки, бронированного зонда, и т.п.). Это делает термопары взаимозаменяемыми без дополнительной подстройки.

При высоких температурах сопротивление материала изоляции термопары уменьшается и токи утечки через изоляцию могут вносить погрешность в результат измерения. Погрешность термопары возрастает также при попадании жидкости внутрь термопары, вследствие чего возникает гальванический эффект.

Основная проблема построения измерительной схемы на базе термопары связана с ее низким выходным напряжением (около 50 мкВ на градус), поскольку синфазные помехи промышленной частоты 50 Гц и радиопомехи, наведенные на элементах измерительной цепи, намного превышают это значение. Поэтому очень важно хорошо экранировать провода, идущие от термопары к системе сбора данных. Термопара должна быть подключена витой парой проводов, помещенных в общий экран. Если провод, идущий к термопаре, достаточно длинный (несколько сотен метров), то наилучшие результаты получаются, если предварительно усилить сигнал термопары усилителем RL-4DA200 и уже усиленный сигнал передавать на большое расстояние. При этом электромагнитные наводки становятся малы по сравнению с усиленным сигналом от термопары, что увеличивает достоверность получаемых результатов. Поэтому усиление должно быть выбрано таким, чтобы верхний предел измерения температуры был равен верхнему пределу выходного напряжения усилителя, то есть 10 В.

Для улучшения отношения сигнал/помеха при значительном удалении термодатчика от системы сбора данных можно использовать также фильтр нижних частот третьего порядка с полосой 5 Гц, типа RL-8F3, который позволяет существенно ослабить помеху частотой 50 Гц. На частоте 50 Гц уровень помехи ослабляется на 60 дБ. Фильтр RL-4F3 устанавливается перед системой ввода данных, т.е. перед мультиплексором. Поэтому инерционность фильтра не требует уменьшения скорости опроса датчиков. При использовании модулей серии NL фильтр использовать не нужно, т.к. он имеется во входных цепях модуля NL-8TI.

Обычно используют два способа компенсации температуры холодного спая. Первый способ состоит в том, что провода, идущие от термопары к системе сбора данных, выполняют термопарным проводом, т.е. проводом, изготовленным из того же материала, что и электроды термпары. При этом "холодные спаи" всех термопар (если их несколько) оказываются расположенными в одном месте и температуры всех "холодных спаев" одинаковы. В этом случае можно использовать один общий термодатчик, измеряющий температуру холодных спаев. Этот способ удобен, когда все термопары расположены недалеко друг от друга и от системы сбора данных.

Второй способ состоит в том, что для каждой термопары используют свой измеритель температуры холодного спая. Это позволяет использовать обычные провода для подсоединения термопары к системе сбора данных, однако одновременно с ними необходимо подвести и сигнал от термопреобразователя, который регистрирует температуру холодного спая. Такой способ удобен, когда термопары пространственно разнесены одна от другой на большое расстояние.

Если термопара в рабочем режиме находится под высоким напряжением или может случайно оказаться под напряженим, необходимо использовать изолирующий усилитель RL-1IDA200.

Точность термопары зависит от химического состава ее материала. Внешние факторы, такие как давление, коррозия, радиация могут изменить кристаллическую структуру или химический состав материала и вносят погрешность в результат измерения.

 




Дата добавления: 2015-09-11; просмотров: 102 | Поможем написать вашу работу | Нарушение авторских прав

<== предыдущая лекция | следующая лекция ==>
Проблемы измерения температуры| Экспериментальная установка, для исследования термоэлектричества

lektsii.net - Лекции.Нет - 2014-2025 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав