Читайте также:
|
|
Реверсия или овершут - изменение знака заряда. Возвращение к исходному заряду - реполяризация.
Токи при возбуждении.
При действии раздражителя на мембрану происходит кратковременное возбуждение. Процесс возбуждения является локальным и распространяется вдоль мембраны, а потом деполяризуется. По мере движения возбуждения деполяризуется новый участок мембраны и т.д. Ток действия является двухфазным током.
В каждой фазе тока действия можно выделить локальный ответ, который сменяется пиковым потенциалом, и за пиковым потенциалом идет отрицательный и положительный следовой потенциал. Возникает при действии раздражителя. Для объяснения тока действия была предложена мембранно-монная теория (Ходжи, Хаксли, Катц). Они показали, что потенциал действия больше потенциала покоя. При действии раздражителя на мембрану происходит смещение заряда на мембрану (частичная деполяризация) и это вызывает открытие натриевых каналов. Натрий проникает внутрь клетки, постепенно снижая заряд на мембране, но потенциал действия возникает не при любом действии, а лишь при критической величине (измениться на 20-30 мВ) - критическая деполяризация. При этом открываются практически все натриевые каналы открыты и в этом случае натрий начинает лавинообразно проникать в клетку. Возникает полная деполяризация. На этом процесс не останавливается, а продолжает поступать в клетку и заряжает до +40. На вершине пикового потенциала происходит закрытие h ворот. При таком значении потенциала в мембране открываются калиевые ворота. И поскольку Ка+ больше внутри, то начинается выход Ка+ из клетки, и заряд начнет возвращаться к исходной величине. По началу он идет быстро, а затем замедляется. Это явление носит название отрицательного хвостового потенциала. Затем заряд востанавливает на исходную велечину, а после этого регистрируется положительный следовой потенциал, характирующийся повышенной проницаемостью для калия. Возникает состояние гиперполяризации мембраны (положительный следовой потенциал) Движение ионов идет пассивно. За одно возбуждение 20 000 инов натрия входят в клетку, и 20 000 ионов калия выходят из клетки.
Насосный механизм необходим для восстановления концентрации. 3 положительных иона натрия вносятся, а 2 иона калия выходят наружу при активном транспорте.
Возбудимость мембраны меняется, а следовательно и потенциал действия. Во время локального ответа происходит постепенное повышение возбуждения. Во время пикового ответа возбуждение исчезает.
При отрицательном следовом потенциале возбудимость будет вновь повышаться, ибо мембрана вновь частично деполяризована. В фазе положительного светового потенциала происходит снижение возбудимости. В этих условиях возбудимость снижается.
Скорость возбудительного процесса - лабильность. Мера лабильности - число возбуждений в единицу времени. Нервные волокна воспроизводят от 500 до 1000 импульсов в секунду. Разные ткани обладают разной лабильностью.
2. Рецепторы, их классификация: по локализации (мембранные, ядерные), механизму развития процессов (ионо- и метаботропные), по скорости приема сигнала (быстрые, медленные), по роду воспринимающих веществ.
Получение клеткой сигнала от первичных посредников обеспечивается особыми белками-рецепторами, для которых первичные посредники являются лигандами. Для обеспечения рецепторной функции молекулы белков должны отвечать ряду требований:
· обладать высокой избирательностью к лиганду;
· кинетика связывания лиганда должна описываться кривой с насыщением, соответствующим состоянию полной занятости всех молекул рецепторов, число которых на мембране ограничено;
· рецепторы должны обладать тканевой специфичностью, отражающей наличие или отсутствие данных функций в клетках органа-мишени;
· связывание лиганда и его клеточный (физиологический) эффект должны быть обратимы, параметры сродства должны соответствовать физиологическим концентрациям лиганда.
Клеточные рецепторы делятся на следующие классы:
· мембранные
· рецепторные тирозинкиназы
· рецепторы, сопряжённые с G-белками
· ионные каналы
· цитоплазматические
· ядерные
Мембранные рецепторы распознают крупные (например, инсулин) или гидрофильные (например, адреналин) сигнальные молекулы, которые не могут самостоятельно проникать в клетку. Небольшие гидрофобные сигнальные молекулы (например, трийодтиронин, стероидные гормоны, CO, NO) способны проникать в клетку за счёт диффузии. Рецепторы таких гормонов обычно являются растворимыми цитоплазматическими или ядерными белками. После связывания лиганда с рецептором информация об этом событии передаётся дальше по цепи и приводит к формированию первичного и вторичного клеточного ответа[2].
Два основных класса мембранных рецепторов — это метаботропные рецепторы и ионотропные рецепторы.
Ионотропные рецепторы представляют собой мембранные каналы, открываемые или закрываемые при связывании с лигандом. Возникающие при этом ионные токи вызывают изменения трансмембранной разности потенциалов и, вследствие этого, возбудимости клетки, а также меняют внутриклеточные концентрации ионов, что может вторично приводитъ к активации систем внутриклеточных посредников. Одним из наиболее полно изученных ионотропных рецепторов является н-холинорецептор.
Структура G-белка, состоящего из трёх типов единиц (гетеротримерного) — αt/αi (голубые), β (красная) и γ (зелёная)
Метаботропные рецепторы связаны с системами внутриклеточных посредников. Изменения их конформации при связывании с лигандом приводит к запуску каскада биохимических реакций, и, в конечном счете, изменению функционального состояния клетки. Основные типы мембранных рецепторов:
Рецепторы, связанные с гетеротримерными G-белками (например, рецептор вазопрессина).
Рецепторы, обладающие внутренней тирозинкиназной активностью (например, рецептор инсулина или рецептор эпидермального фактора роста).
Рецепторы, связанные с G-белками, представляют собой трансмембранные белки, имеющие 7 трансмембранных доменов, внеклеточный N-конец и внутриклеточный C-конец. Сайт связывания с лигандом находится на внеклеточных петлях, домен связывания с G-белком — вблизи C-конца в цитоплазме.
Активация рецептора приводит к тому, что его α-субъединица диссоциирует от βγ-субъединичного комплекса и таким образом активируется. После этого она либо активирует, либо наоборот инактивирует фермент, продуцирующий вторичные посредники.
Рецепторы с тирозинкиназной активностью фосфорилируют последующие внутриклеточные белки, часто тоже являющиеся протеинкиназами, и таким образом передают сигнал внутрь клетки. По структуре это — трансмембранные белки с одним мембранным доменом. Как правило, гомодимеры, субъединицы которых связаны дисульфидными мостиками.
3. Ионотропные рецепторы, метаботропные рецепторы и их разновидности. Системы вторичных посредников действия метаботропных рецепторов (цАМФ, ц ГМФ, инозитол-3-фосфат, диацилглицерол, ионы Са++).
Рецепторы к нейромедиаторам располагаются на мембранах нейронов или клеток-мишеней (мышечные или железистые клетки). Их локализация может быть и на постсинаптических, и на пресинаптических мембранах. На пресинаптических мембранах чаще располагаются так называемые ауторецепторы, которые регулируют выделение этого же медиатора из пресинаптического окончания. Но есть и гетероауторецепторы, которые также регулируют выделение медиатора, но в этих рецепторах выделение одного медиатора регулирует другой медиатор или нейромодулятор.
Большинство рецепторов – это мембраносвязанные олигомерные белки, которые связывают лиганд (нейромедиатор) с высоким сродством и высокой селективностью. В результате этого взаимодействия запускается каскад внутриклеточных изменений. Рецепторы характеризуются сродством к лиганду, количеством, насыщаемостью и способностью к диссоциации рецептор-лигандного комплекса. У некоторых рецепторов обнаружены изоформы, которые различаются сродством к определенным лигандам. Эти изоформы могут находиться в одной и той же ткани.
Лиганды - это вещества, избирательно взаимодействующие с данным рецептором. Если фармакологическое вещество активирует данный рецептор, оно является агонистом для него, а если снижает его активность – то антагонистом.
Связывание лиганда с рецептором приводит к изменению конформации рецептора, вседствие чего или открываются ионные каналы, или запускается каскад реакций, приводящих к изменениям метаболизма.
Выделяют ионотропные и метаботропные рецепторы.
Ионотропные рецепторы. Вследствие образования постсинаптического потенциала происходит открытие соответствующего ионного канала или сразу при действии медиатора, или через активацию G-белка. При этом рецептор или сам образует ионный канал, или связан с ним. После присоединения лиганда и активации рецептора происходит открытие канала для соответствующего иона. В результате на мембране образуется постсинаптический потенциал. Ионотропные рецепторы – это путь быстрой передачи сигнала и образования ПСП без изменения процессов метаболизма в клетке.
Метаботропные рецепторы. Это более сложный путь передачи сигнала. При этом после связывания лиганда с рецептором происходит активация каскада фосфорилирование-дефосфорилирование. Это осуществляется или прямо, или через вторичные посредники, например, через тирозинкиназу, или через цАМФ, или цГМФ, или инозитолтрифосфат, или диацилглицерол, или за счет увеличения внутриклеточного кальция, что в результате приводит к активации протеинкиназ. Фосфорилирование чаще всего включает в себя активацию цАМФ-зависимой или диацилглицерол-зависимой протеинкиназы. Эти эффекты развиваются более медленно и длятся более долго.
Сродство рецептора к соответствующему нейромедиатору может меняться так же, как и к гормонам, например, за счет аллостерических изменений рецептора или других механизмов. Поэтому сейчас рецепторы обозначают как мобильные и легко изменяемые структуры. Входя в состав мембраны, белки-рецепторы могут взаимодействовать с другими мембранными белками (так называемая интернализация рецепторов). Нейромодуляторы, как и нейромедиаторы, могут влиять на число и чувствительность рецепторов. Длительное присутствие больших количеств нейромедиатора или нейромодулятора может снижать их чувствительность (даун-регуляция), а недостаток лигандов повышать их чувствительность (ап-регуляция).
Дата добавления: 2014-12-15; просмотров: 154 | Поможем написать вашу работу | Нарушение авторских прав |