Читайте также: |
|
Нейронная сеть представляет собой совокупность большого числа сравнительно простых элементов - нейронов, топология соединений которых зависит от типа сети. Чтобы создать нейронную сеть для решения какой-либо конкретной задачи, мы должны выбрать, каким образом следует соединять нейроны друг с другом, и соответствующим образом подобрать значения весовых параметров на этих связях. Может ли влиять один элемент на другой, зависит от установленных соединений. Вес соединения определяет силу влияния.
Некоторые проблемы, решаемые искусственными нейронными сетями:
Классификация образов. Задача состоит в указании принадлежности входного образа, представленного вектором признаков, одному или нескольким предварительно определенным классам. К известным приложениям относятся распознавание букв, распознавание речи, классификация сигнала электрокардиограммы, классификация клеток крови.
Кластеризация/категоризация. При решении задачи кластеризации, которая известна также как классификация образов без учителя, отсутствует обучающая выборка с метками классов. Алгоритм кластеризации основан на подобии образов и размещает близкие образы в один кластер. Известны случаи применения кластеризации для извлечения знаний, сжатия данных и исследования свойств данных,
Аппроксимация функций. Предположим, что имеется обучающая выборка ((x1, y1), (x2, y2), …, (xN, yN)), которая генерируется неизвестной функцией, искаженной шумом. Задача аппроксимации состоит в нахождении оценки этой функции.
Предсказание/прогноз. Пусть заданы N дискретных отсчетов {y(t1), y(t2), …, y(tN)} в последовательные моменты времени t1, t2, …, tN. Задача состоит в предсказании значения y(tN+1) в момент tN+1. Прогноз имеют значительное влияние на принятие решений в бизнесе, науке и технике.
Оптимизация. Многочисленные проблемы в математике, статистике, технике, науке, медицине и экономике могут рассматриваться как проблемы оптимизации. Задачей оптимизации является нахождение решения, которое удовлетворяет системе ограничений и максимизирует или минимизирует целевую функцию.
Память, адресуемая по содержанию. В модели вычислений фон Неймана обращение к памяти доступно только посредством адреса, который не зависит от содержания памяти. Более того, если допущена ошибка в вычислении адреса, то может быть найдена совершенно иная информация. Память, адресуемая по содержанию, или ассоциативная память, доступна по указанию заданного содержания. Содержимое памяти может быть вызвано даже по частичному или искаженному содержанию. Ассоциативная память чрезвычайно желательна при создании перспективных информационно-вычислительных систем.
Управление. Рассмотрим динамическую систему, заданную совокупностью {u(t), y(t)}, где u(t) является входным управляющим воздействием, а у(t) - выходом системы в момент времени t. В системах управления с эталонной моделью целью управления является расчет такого входного воздействия u(t), при котором система следует по желаемой траектории, диктуемой эталонной моделью.
Дата добавления: 2014-12-20; просмотров: 74 | Поможем написать вашу работу | Нарушение авторских прав |
|