Читайте также:
|
|
Бронхообструктивный синдром любого генеза: бронхиальная астма (препарат выбора у больных с астмой физического напряжения и как дополнительное средство при др. формах), хроническая обструктивная болезнь легких, эмфизема легких, хронический обструктивный бронхит, легочная гипертензия, «легочное» сердце, ночное апноэ.
Фармакологическое действие: бронхолитическое средство, производное ксантина; ингибирует фосфодиэстеразу, увеличивает накопление в тканях циклического аденозинмонофосфата, блокирует аденозиновые (пуриновые) рецепторы; снижает поступление ионов кальция через каналы клеточных мембран, уменьшает сократительную активность гладкой мускулатуры. Расслабляет мускулатуру бронхов, стимулирует сокращение диафрагмы, улучшает функцию дыхательных и межреберных мышц, стимулирует дыхательный центр, повышает его чувствительность к углекислому газу и улучшает альвеолярную вентиляцию, что в конечном итоге приводит к снижению тяжести и частоты эпизодов апноэ. Нормализуя дыхательную функцию, способствует насыщению крови кислородом и снижению концентрации углекислоты. Оказывает стимулирующее влияние на деятельность сердца, увеличивает силу и число сердечных сокращений, повышает коронарный кровоток и потребность миокарда в кислороде.
МАГИСТРЫ БИ, ИВТ (КАИД), ПМИ, ПРО (дневное) - 2012
ДИСЦИПЛИНА: ТЕОРЕТИЧЕСКИЕ ОСНОВЫ
ИНФОРМАЦИОННЫХ ПРОЦЕССОВ
ЛЕКЦИЯ №5 часть 2.2
Тема: Нейросетевые модели в задачах с неопределнностью (Часть 3)
История
Теоретические основы нейроматематики были заложены в начале 40-х годов. В 1943 году У. Маккалох и его ученик У. Питтс сформулировали основные положения теории деятельности головного мозга. Ими были получены следующие результаты:
- разработана модель нейрона как простейшего процессорного элемента, выполняющего вычисление переходной функции от скалярного произведения вектора входных сигналов и вектора весовых коэффициентов;
- предложена конструкция сети таких элементов для выполнения логических и арифметических операций;
- сделано основополагающее предположение о том, что такая сеть способна обучаться, распознавать образы, обобщать полученную информацию.
Несмотря на то, что за прошедшие годы нейроматематика ушла далеко вперед, многие утверждения Макклоха остаются актуальными и поныне. В частности, при большом разнообразии моделей нейронов принцип их действия, заложенный Макклохом и Питтсом, остается неизменным.
Недостатком данной модели является сама модель нейрона - «пороговой» вид переходной функции. В формализме У. Маккалоха и У. Питтса нейроны имеют состояния 0, 1 и пороговую логику перехода из состояния в состояние. Каждый нейрон в сети определяет взвешенную сумму состояний всех других нейронов и сравнивает ее с порогом, чтобы определить свое собственное состояние. Пороговый вид функции не предоставляет нейронной сети достаточную гибкость при обучении и настройке на заданную задачу. Если значение вычисленного скалярного произведения, даже незначительно, не достигает до заданного порога, то выходной сигнал не формируется вовсе и нейрон «не срабатывает». Это значит, что теряется интенсивность выходного сигнала (аксона) данного нейрона и, следовательно, формируется невысокое значение уровня на взвешенных входах в следующем слое нейронов.
Серьезное развитие нейрокибернетика получила в работах американского нейрофизиолога Френсиса Розенблата (Корнелльский университет). В 1958 году он предложил свою модель нейронной сети. Розенблат ввел в модель Маккаллока и Питтса способность связей к модификации, что сделало ее обучаемой. Эта модель была названа персептроном. Первоначально персептрон представлял собой однослойную структуру с жесткой пороговой функцией процессорного элемента и бинарными или многозначными входами. Первые персептроны были способны распознавать некоторые буквы латинского алфавита. Впоследствии модель персептрона была значительно усовершенствована.
Персептрон применялся для задачи автоматической классификации, которая в общем случае состоит в разделении пространства признаков между заданным количеством классов. В двухмерном случае требуется провести линию на плоскости, отделяющую одну область от другой. Персептрон способен делить пространство только прямыми линиями (плоскостями).
Алгоритм обучения персептрона выглядит следующим образом:
1) системе предъявляется эталонный образ;
2) если выходы системы срабатывают правильно, весовые коэффициенты связей не изменяются;
3) если выходы срабатывают неправильно, весовым коэффициентам дается небольшое приращение в сторону повышения качества распознавания.
Серьезным недостатком персептрона является то, что не всегда существует такая комбинация весовых коэффициентов, при которой имеющееся множество образов будет распознаваться данным персептроном. Причина этого недостатка состоит в том, что лишь небольшое количество задач предполагает, что линия, разделяющая эталоны, будет прямой. Обычно это достаточно сложная кривая, замкнутая или разомкнутая. Если "учесть, что однослойный персептрон реализует только линейную разделяющую поверхность, применение его там, где требуется нелинейная, приводит к неверному распознаванию (эта проблема называется линейной неразделимостью пространства признаков). Выходом из этого положения является использование многослойного персептрона, способного строить ломаную границу между распознаваемыми образами.
Описанная проблема не является единственной трудностью, возникающей при работе с персептронами - также слабо формализован метод обучения персептрона. Персептрон поставил ряд вопросов, работа над решением которых привела к созданию более «разумных» нейронных сетей и разработке методов, нашедших применение не только в нейрокибернетике (например, метод группового учета аргументов, применяемый для идентификации математических моделей).
В 70-е годы интерес к нейронным сетям значительно упал, однако работы по их исследованию продолжались. Был предложен ряд интересных разработок, таких, например, как когнитрон, способный хорошо распознавать достаточно сложные образы (иероглифы и т.п.) независимо от поворота и изменения масштаба изображения. Автором когнитрона является японский ученый И. Фукушима.
Новый виток быстрого развития моделей нейронных сетей связан с работами Амари, Андерсона, Карпентера, Кохена и других, и в особенности, Хопфилда.
Начало современному математическому моделированию нейронных вычислений было положено работами Хопфилда в 1982 году, в которых была сформулирована математическая модель ассоциативной памяти на нейронной сети с использованием правила Хеббиана для программирования сети. Но не столько сама модель послужила толчком к появлению работ других авторов на эту тему, сколько введенная Хопфилдом функция вычислительной энергии нейронной сети. Это аналог функции Ляпунова в динамических системах. Показано, что для однослойной нейронной сети со связями типа «все на всех» характерна сходимость к одной из конечного множества равновесных точек, которые являются локальными минимумами функции энергии, содержащей в себе всю структуру взаимосвязей в сети. Понимание такой динамики в нейронной сети было и у других исследователей. Однако, Хопфилд и Тэнк показали как конструировать функцию энергии для конкретной оптимизационной задачи и как использовать ее для отображения задачи в нейронную сеть. Этот подход получил развитие и для решения других комбинаторных оптимизационных задач. Привлекательность подхода Хопфилда состоит в том, что нейронная сеть для конкретной задачи может быть запрограммирована без обучающих итераций. Веса связей вычисляются на основании вида функции энергии, сконструированной для этой задачи.
Развитием модели Хопфилда для решения комбинаторных оптимизационных задач и задач искусственного интеллекта является машина Больцмана, предложенная и исследованная Джефери Е. Хинтоном и Р. Земелом. В ней, как и в других моделях, нейрон имеет состояния 1, 0 и связь между нейронами обладает весом. Каждое состояние сети характеризуется определенным значением функции консенсуса (аналог функции энергии). Максимум функции консенсуса соответствует оптимальному решению задачи.
Имеется следующая информация о результатах моделирования на ЭВМ работы нейронной сети. Моделировалась асинхронная работа сети Хопфилда. Сеть работает хорошо, т.е. без ошибок восстанавливает эталонные образы из случайных, если в нее записывается не более 15% эталонных образов. Испытания проводились для 30 нейронов и для 100 нейронов в сети. Бралось некоторое количество случайных векторов в качестве эталонных и строилась соответствующая матрица весов связей. Моделирование при 100 нейронах было существенно более медленным процессам, чем при 30 нейронах, хотя качественная картина и в том и в другом случаях была одна и та же. Приблизительно 88% испытаний заканчивались в эталонных состояниях, 10% в устойчивых состояниях, близких к эталонным. При расстоянии <= 5 между начальным и эталонным векторами, эталонное состояние достигалось в 90% случаев. С увеличением расстояния, вероятность попадания в наиболее близкое эталонное состояние гладко падала. При расстоянии 12 вероятность была равна 0.2. Устойчивые состояния, слишком близкие друг к другу, имеют тенденцию «сливаться», они попадают в одну впадину на энергетической поверхности.
Дата добавления: 2014-12-20; просмотров: 86 | Поможем написать вашу работу | Нарушение авторских прав |