Читайте также:
|
|
Вновь рассмотрим сосуд объемом V, разделенный перегородкой на две части, но пусть теперь они заполнены разными газами, находящимися в состоянии термодинамического равновесия, между которыми тоже существует термодинамическое равновесие, то есть температуры и давления в обеих частях сосуда одинаковы. Если убрать перегородку, происходит диффузия до нового равновесного состояния, в котором распределение молекул обоих газов равномерно, так как предполагается отсутствие внешних полей.
Рассчитаем изменение энтропии в этом процессе. Данный процесс можно рассматривать как расширение в пустоту каждого из двух газов, и изменение энтропии определить как сумму изменений энтропии в каждом из этой процессов:
. (5.5.1)
Очевидно, изменение энтропии в анализируемом процессе больше нуля. Состояние в сосуде с перегородкой более упорядоченное, по сравнению с конечным состоянием. Самостоятельно смесь не делится на две компоненты, то есть процесс необратим. Происходит уменьшение упорядоченности, увеличение беспорядка, при этом энтропия возрастает.
Данный опыт можно произвести и с одним газом в обеих частях, при этом будет наблюдаться самодиффузия. Как изменится энтропия в этом случае? Объективных данных для различия состояний при протекании самодиффузии нет, следовательно, энтропия в этом случае не изменяется (рис. 5.5.1).
Таким образом, возникает парадокс: при самодиффузии энтропия не изменяется, при взаимной диффузии - возрастает. Если устремить массу молекулы первого газа к массе молекулы второго, тогда при непрерывном уменьшении разности масс , изменение энтропии осуществляется скачком. Этот парадокс был сформулирован Гиббсом, но просуществовал недолго. Данный парадокс был разрешен квантовой физикой. Параметры молекулы, как и любых других квантовых объектов, отличаются друг от друга на конечную величину. Таким образом, парадокса нет, так как непрерывное изменение параметров молекул невозможно.
Дата добавления: 2014-12-20; просмотров: 182 | Поможем написать вашу работу | Нарушение авторских прав |
|