Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Гармонические колебания

Читайте также:
  1. Акустические колебания, постоянный и непостоянный шум. Действие на организм
  2. Акустические колебания. Шум, виды шумов. Физические характеристика шума. Ультразвук, инфразвук. Воздействие на организм человека. Способы защиты.
  3. Безработица, вызываемая колебаниями валового национального продукта, называется ________ безработицей. циклической
  4. В) колебания инвестиций в основной капитал
  5. Вопрос 35 Циклические колебания численности популяций и вспышки численности
  6. Вынужденные колебания системы с одной степенью свободы под действием периодической возмущающей силы. Коэффициент динамичности.
  7. Гармонические колебания
  8. Гармонические колебания и их характеристики. Дифференциальное уравнение. Скорость, ускорение, энергия механических гармонических колебаний.
  9. Гармонические колебания. Осциллятор

Маятник, совершающий малые колебания, движется по синусоиде. Поскольку уравнение движения является обыкновенным ДУ второго порядка, для определения закона движения маятника необходимо задать два начальных условия — координату и скорость, из которых определяются две независимых константы:

где A — амплитуда колебаний маятника, θ0 — начальная фаза колебаний, ω — циклическая частота, которая определяется из уравнения движения. Движение, совершаемое маятником, называется гармоническими колебаниями

 

8 Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).

Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания

Резонансная частота контура определяется так называемой формулой Томсона:


Пусть конденсатор ёмкостью C заряжен до напряжения U 0. Энергия, запасённая в конденсаторе составляет

Параллельный колебательный контур

При соединении конденсатора с катушкой индуктивности, в цепи потечёт ток I, что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности) в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.

Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора EC = 0. Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна

, где L — индуктивность катушки, I 0 — максимальное значение тока.

После этого начнётся перезарядка конденсатора, то есть заряд конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор, в этом случае, снова будет заряжен до напряжения − U 0.

В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.

 

 




Дата добавления: 2015-01-30; просмотров: 134 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.006 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав