Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Принцип работы

Читайте также:
  1. I. Общие рекомендации по организации самостоятельной работы студентов
  2. I. ОБЩИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КУРСОВОЙ РАБОТЫ
  3. I. Работы с тяжелыми и вредными условиями труда
  4. II Методы очистки сточных вод от маслопродуктов.Принцип работы напорного гидроциклона.
  5. II. Организация и порядок работы комиссии по трудовым спорам
  6. II. Работы с особо тяжелыми и особо вредными условиями труда
  7. II. СТРУКТУРА СТУДЕНЧЕСКОЙ НАУЧНОЙ РАБОТЫ
  8. II. ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ КУРСОВОЙ РАБОТЫ
  9. II. Указания к выполнению частей контрольной работы
  10. II. Цели и задачи выпускной квалификационной работы

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10—30 мг), необходимого для анализа на большое число элементов.

Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000—10000°C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Билет номер 24

Фотоэффе́кт — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Законы фотоэффекта:

Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл.

Согласно 2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.

3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если , то фотоэффект уже не происходит.

Теоретическое объяснение этих законов было дано в 1905 году Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов (фотонов) с энергией hν каждый, где h — постоянная Планка. При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода, покидает металл: , где — максимальная кинетическая энергия, которую может иметь электрон при вылете из металла.

Фотоэлементы, действие которых основано на внешнем фотоэффекте, преобразуют в электрическую энергию лишь незначительную часть энергии излучения. Поэтому в качестве источников электроэнергии их не используют, зато широко применяют в различных схемах автоматики для управления электрическими цепями с помощью световых пучков.

Билет номер 25

Ядро атома состоит из протонов и нейтронов, причем число протонов совпадает с порядковым номером элемента.

А =Z + N

А - массовое число Z- число протонов N - число нейтронов23/11 Na: А-23 Z=11 N=12

Изотопы - вещества, имеющие одинаковое число протонов, на разное число нейтронов. Силы, которые удерживают протоны, и нейтроны в ядре называются ядерные. Это самые большие силы в природе, но действуют на очень малых расстояниях (в пределах ядра). Энергия, которая требуется для расщепления ядра на составные части, называется энергия связи

У ядер тяжелых элементов энергия связи будет меньше, поэтому они могут делиться. Например деление ядер урана:

Нейтрон попадает в ядра урана, при этом ядро делиться на 2 осколка неравной массы. = выделяется 2-3 нейтрона и выделяется энергия.

Освободившейся нейтроны попадают в новые ядра урана, вызывая их Явление. Этот процесс называется цепной ядерной реакцией. Различают 2 вида

1) Неуправляемая - число нейтронов постоянно растет. Протекает в ш;

взрыва, осуществляется в ядерной бомбе.

2) Управляемая - число нейтронов поддерживается постоянно. Протс
плавно, осуществляется в ядерном реакторе.

Я́дерная реа́кция — процесс образования новых ядер или частиц при столкновениях ядер или частиц. Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота, она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.

Ядерная энергетика (Атомная энергетика) — это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.

Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло

Билет номер 26

Радиоакти́вный распа́д (от лат. radius «луч» и āctīvus «действенный») — спонтанное изменение состава нестабильных атомных ядер (заряда Z, массового числа A) путём испускания элементарных частиц или ядерных фрагментов[1]. Процесс радиоактивного распада также называют радиоакти́вностью, а соответствующие элементы радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.

Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и многие более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, таких как индий, калий или кальций, часть природных изотопов стабильны, другие же радиоактивны).

Радиоактивное излучение бывает трех типов: a -, b- и g -излучение. Подробное их исследование позволило выяснить природу и основные свойства.

a -Излучение отклоняется электрическим и магнитным полями, обладает высокой ионизирующей способностью и малой проникающей способностью (например, погло­щаются слоем алюминия толщиной примерно 0,05 мм). a -Излучение представляет собой поток ядер гелия; заряд a -частицы равен + 2 е, а масса совпадает с массой ядра изотопа гелия Не. По отклонению a -частиц в электрическом и магнитном полях был определен их удельный заряд Q/ma , значение которого подтвердило правильность представлений об их природе.

b -Излучение отклоняется электрическим и магнитным полями; его ионизирующая способность значительно меньше (примерно на два порядка), а проникающая способ­ность гораздо больше (поглощается слоем алюминия толщиной примерно 2 мм), чем у a -частиц. b -Излучение представляет собой поток быстрых электронов (это вытекает из определения их удельного заряда).

Поглощение потока электронов с одинаковыми скоростями в однородном веществе подчиняется экспоненциальному закону N=N 0 em x, где N 0и N — число электронов на входе и выходе слоя вещества толщиной x, m — коэффициент поглощения. b -Излучение сильно рассеивается в веществе, поэтому m зависит не только от вещества, но и от размеров и формы тел, на которые b -излучение падает.

g -Излучение не отклоняется электрическим и магнитным полями, обладает от­носительно слабой ионизирующей способностью и очень большой проникающей спо­собностью (например, проходит через слой свинца толщиной 5 см), при прохождении через кристаллы обнаруживает дифракцию. g -излучение представляет собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны l<10–10 м и вследствие этого — ярко выраженными корпускулярными свойствами, т.е. является потоком частиц — g -квантов (фотонов).

Приборы, применяемые для регистрации ядерных излучений, называются детекторами ядерных излучений. Наиболее широкое применение получили детекторы, обнаруживающие ядерные излучения по производимой ими ионизации и возбуждению атомов вещества: газоразрядный счетчик Гейгера, камера Вильсона, пузырьковая камера. Существует также метод фотоэмульсий, основанный на способности пролетающей частицы создавать в фотоэмульсии скрытое изображение. След пролетевшей частицы виден на фотографии после проявления.

Радиоактивные излучения оказывают сильное биологическое действие на ткани живого организма, заключающееся в ионизации атомов и молекул среды. Возбужденные атомы и ионы обладают сильной химической активностью, поэтому в клетках организма появляются новые химические соединения, чуждые здоровому организму. Под действием ионизирующей радиации разрушаются сложные молекулы и элементы клеточных структур. В человеческом организме нарушается процесс кроветворения, приводящий к дисбалансу белых и красных кровяных телец. Человек заболевает белокровием, или так называемой лучевой болезнью. Большие дозы облучения приводят к смерти.

 




Дата добавления: 2015-01-30; просмотров: 102 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав