Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Электромагнетизм

Читайте также:
  1. Электромагнетизм
  2. Электромагнетизм 1

 

8. Эффект Холла.

Эффект Холла* (1879) — это возникновение в металле (или полупроводнике) с током плотностью j, помещенном в магнитное поле В, электрического поля в направлении, перпендикулярном В и j.

* Э. Холл (1855—1938) — американский физик.

 

Поместим металлическую пластинку с током плотностью j в магнитное поле В, перпендикулярное j (рис. 172). При данном направлении j скорость носителей тока в металле — электронов — направлена справа налево. Электроны испытывают дейст­вие силы Лоренца (см. § 114), которая в данном случае направлена вверх. Таким образом, у верхнего края пластинки возникнет повышенная концентрация электронов (он зарядится отрицательно), а у нижнего — их недостаток (зарядится положительно). В результате этого между краями пластинки возникнет дополнительное поперечное электрическое поле, направленное снизу вверх. Когда напряженность ЕB этого попереч­ного поля достигнет такой величины, что его действие на заряды будет уравновеши­вать силу Лоренца, то установится стационарное распределение зарядов в поперечном направлении. Тогда

где а — ширина пластинки, Dj — поперечная (холловская) разность потенциалов.

Учитывая, что сила тока I=jS=nevS (S — площадь поперечного сечения пластинки толщиной d, п — концентрация электронов, v — средняя скорость упорядоченного движения электронов), получим

(117.1)

т. е. холловская поперечная разность потенциалов прямо пропорциональна магнитной индукции В, силе тока I и обратно пропорциональна толщине пластинки d. В формуле (117.1) R= 1 / (en) постоянная Холла, зависящая от вещества. По измеренному значе­нию постоянной Холла можно: 1) определить концентрацию носителей тока в провод­нике (при известных характере проводимости и заряда носителей); 2) судить о природе проводимости полупроводников (см. § 242, 243), так как знак постоянной Холла совпадает со знаком заряда е носителей тока. Эффект Холла поэтому — наиболее эффективный метод изучения энергетического спектра носителей тока в металлах и полупроводниках. Он применяется также для умножения постоянных токов в анало­говых вычислительных машинах, в измерительной технике (датчики Холла) и т. д.

 

8.Ускорители заряженных частиц.

Ускорителями заряженных частиц называются устройства, в которых под действием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц (электронов, протонов, мезонов и т. д.).

Любой ускоритель характеризуется типом ускоряемых частиц, энергией, сообща­емой частицам, разбросом частиц по энергиям и интенсивностью пучка. Ускорители делятся на непрерывные (из них выходит равномерный по времени пучок) и импульсные (из лих частицы вылетают порциями — импульсами). Последние характеризуются длительностью импульса. По форме траектории и механизму ускорения частиц ускори­тели делятся на линейные, циклические и индукционные. В линейных ускорителях траектории движения частиц близки к прямым линиям, в циклических и индукцион­ных — траекториями частиц являются окружности или спирали.

Рассмотрим некоторые типы ускорителей заряженных частиц.

1. Линейный ускоритель. Ускорение частиц осуществляется электростатическим полем, создаваемым, например, высоковольтным генератором Ван-де-Граафа (см. § 92). Заряженная частица проходит поле однократно: заряд Q, проходя разность потенциалов j1—j2, приобретает энергию W=Q (j1—j2). Таким способом частицы ускоряются до»10 МэВ. Их дальнейшее ускорение с помощью источников постоян­ного напряжения невозможно из-за утечки зарядов, пробоев и т. д.

2. Линейный резонансный ускоритель. Ускорение заряженных частиц осуществляет­ся переменным электрическим полем сверхвысокой частоты, синхронно изменяющимся с движением частиц. Таким способом протоны ускоряются до энергий порядка десят­ков мегаэлектрон-вольт, электроны — до десятков гигаэлектрон-вольт.

3. Циклотрон — циклический резонансный ускоритель тяжелых частиц (протонов, ионов). Его принципиальная схема приведена на рис. 171. Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода (1 и 2) в виде полых металлических полуцилиндров, или дуантов. К дуантам приложено переменное электрическое поле. Магнитное поле, создаваемое электромагнитом, одно­родно и перпендикулярно плоскости дуантов.

Если заряженную частицу ввести в центр зазора между дуантами, то она, ускоря­емая электрическим и отклоняемая магнитным полями, войдя в дуант 1, опишет полуокружность, радиус которой пропорционален скорости частицы (см. (115.1)). К моменту ее выхода из дуанта 1 полярность напряжения изменяется (при соответст­вующем подборе изменения напряжения между дуантами), поэтому частица вновь ускоряется и, переходя в дуант 2, описывает там уже полуокружность большего радиуса и т. д.

Для непрерывного ускорения частицы в циклотроне необходимо выполнить условие синхронизма (условие «резонанса») — периоды вращения частицы в магнитном поле и колебаний электрического поля должны быть равны. При выполнении этого условия частица будет двигаться по раскручивающейся спирали, получая при каждом прохож­дении через зазор дополнительную энергию. На последнем витке, когда энергия частиц и радиус орбиты доведены до максимально допустимых значений, пучок частиц посредством отклоняющего электрического поля выводится из циклотрона.

Циклотроны позволяют ускорять протоны до энергий примерно 20 МэВ. Даль­нейшее их ускорение в циклотроне ограничивается релятивистским возрастанием мас­сы со скоростью (см. (39.1)), что приводит к увеличению периода обращения (по (115.2) он пропорционален массе), и синхронизм нарушается. Поэтому циклотрон совершенно неприменим для ускорения электронов (при E =0,5 МэВ m =2 m 0, при E =10 МэВ m =28 m 0 !).

Ускорение релятивистских частиц в циклических ускорителях можно, однако, осу­ществить, если применять предложенный в 1944 г. В. И. Векслером (1907—1966) и в 1945 г. американским физиком Э. Мак-Милланом (р. 1907) принцип автофазировки. Его идея заключается в том, что для компенсации увеличения периода вращения частиц, ведущего к нарушению синхронизма, изменяют либо частоту ускоряющего электрического, либо индукцию магнитного полей, либо то и другое. Принцип автофазировки используется в фазотроне, синхротроне и синхрофазотроне.

4. Фазотрон (синхроциклотрон) — циклический резонансный ускоритель тяжелых заряженных частиц (например, протонов, ионов, a -частиц), в котором управляющее магнитное поле постоянно, а частота ускоряющего электрического поля медленно изменяется с периодом. Движение частиц в фазотроне, как и в циклотроне, происходит по раскручивающейся спирали. Частицы в фазотроне ускоряются до энергий, примерно равных 1 ГэВ (ограничения здесь определяются размерами фазотрона, так как с ро­стом скорости частиц растет радиус их орбиты).

5. Синхротрон — циклический резонансный ускоритель ультрарелятивистских элек­тронов, в котором управляющее магнитное поле изменяется во времени, а частота ускоряющего электрического поля постоянна. Электроны в синхротроне ускоряются до энергий 5—10 ГэВ.

6. Синхрофазотрон — циклический резонансный ускоритель тяжелых заряженных частиц (протонов, ионов), в котором объединяются свойства фазотрона и синхротрона, т. е. управляющее магнитное поле и частота ускоряющего электрического поля одно­временно изменяются во времени так, чтобы радиус равновесной орбиты частиц оставался постоянным. Протоны ускоряются в синхрофазотроне до энергий 500 ГэВ.

7. Бетатрон — циклический индукционный ускоритель электронов, в котором уско­рение осуществляется вихревым электрическим полем (см. § 137), индуцируемым переменным магнитным полем, удерживающим электроны на круговой орбите. В бета­троне в отличие от рассмотренных выше ускорителей не существует проблемы синхро­низации. Электроны в бетатроне ускоряются до энергий 100 МэВ. При W > 100 МэВ режим ускорения в бетатроне нарушается электромагнитным излучением электронов. Особенно распространены бетатроны на энергии 20—50 МэВ.

 

8. Э.д.с. индукции – закон Фарадея.

Обобщая результаты своих многочисленных опытов, Фарадей пришел к количествен­ному закону электромагнитной индукции. Он показал, что всякий раз, когда проис­ходит изменение сцепленного с контуром потока магнитной индукции, в контуре возникает индукционный ток; возникновение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой электро­магнитной индукции. Значение индукционного тока, а следовательно, и э.д.с. электро­магнитной индукции определяются только скоростью изменения магнитного потока, т. е.

 

Теперь необходимо выяснить знак . В § 120 было показано, что знак магнитного потока зависит от выбора положительной нормали к контуру. В свою очередь, положительное направление нормали определяется правилом правого винта (см. § 109). Следовательно, выбирая положительное направление нормали, мы определяем как знак потока магнитной индукции, так и направление тока и э.д.с. в контуре. Пользуясь этими представлениями и выводами, можно соответственно прийти к форм­улировке закона электромагнитной индукции Фарадея: какова бы ни была причина изменения потока магнитной индукции, охватываемого замкнутым проводящим кон­туром, возникающая в контуре э. д. с.

(123.2)

Знак минус показывает, что увеличение потока вызывает э. д. с. т. е. поле индукционного тока направлено навстречу потоку; уменьшение потока вызывает т.е. направления потока и поля индукционного тока совпадают. Знак минус в формуле (123.2) определяется правилом Ленца — общим правилом для нахождения направления индукционного тока, выведенного в 1833 г.

Правило Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызва­вшему этот индукционный ток.

Закон Фарадея (см. (123.2)) может быть непосредственно получен из закона со­хранения энергии, как это впервые сделал Г. Гельмгольц. Рассмотрим проводник с током I, который помещен в однородное магнитное поле, перпендикулярное плоско­сти контура, и может свободно перемещаться (см. рис. 177). Под действием силы Ампера F, направление которой показано на рисунке, проводник перемещается на отрезок d x. Таким образом, сила Ампера производит работу (см. (121.1)) d A = I dФ, где dФ — пересеченный проводником магнитный поток.

Согласно закону сохранения энергии, работа источника тока за время d t () будет складываться из работы на джоулеву теплоту (I 2 R d t) и работы по перемещению проводника в магнитном поле (I dФ):

где R — полное сопротивление контура. Тогда

= есть не что иное, как закон Фарадея (см. (123.2)).

Закон Фарадея можно сформулировать еще таким образом: э.д.с. электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром. Этот закон является универсальным: э. д. с. не зависит от способа изменения магнитного потока. Э.д.с. электромагнитной индукции выражается в вольтах. Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим

Какова природа э.д.с. электромагнитной индукции? Если проводник (подвижная перемычка контура на рис. 177) движется в постоянном магнитном поле, то сила Лоренца, действующая на заряды внутри проводника, движущиеся вместе с проводни­ком, будет направлена противоположно току, т. е. она будет создавать в проводнике индукционный ток противоположного направления (за направление электрического тока принимается движение положительных зарядов). Таким образом, возбуждение э.д.с. индукции при движения контура в постоянном магнитном поле объясняется действием силы Лоренца, возникающей при движении проводника.

Согласно закону Фарадея, возникновение э.д.с. электромагнитной индукции воз­можно и в случае неподвижного контура, находящегося в переменном магнитном поле. Однако сила Лоренца на неподвижные заряды не действует, поэтому в данном случае ею нельзя объяснить возникновение э.д.с. индукции. Максвелл для объяснения э.д.с. индукции в неподвижных проводниках предположил, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводнике. Циркуляция вектора Е B этого поля по любому неподвижному контуру L проводника представляет собой э. д. с. электромагнитной индукции:

(123.3)

 

8. Магнитная проницаемость вещества.

Подобно тому, как для количественного описания поляризации диэлектриков вводи­лась поляризованность (см. § 88), для количественного описания намагничения магнетиков вводят векторную величину — намагниченность, определяемую магнитным моментом единицы объема магнетика:

где — магнитный момент магнетика, представляющий собой векторную сумму магнитных моментов отдельных молекул (см. (131.6)).

Рассматривая характеристики магнитного поля (см. § 109), мы вводили вектор магнитной индукции В, характеризующий результирующее магнитное поле, создава­емое всеми макро- и микротоками, и вектор напряженности Н, характеризующий магнитное поле макротоков. Следовательно, магнитное поле в веществе складывается из двух полей: внешнего поля, создаваемого током, и поля, создаваемого намагничен­ным веществом. Тогда можем записать, что вектор магнитной индукции результирующего магнитного ноля в магнетике равен векторной сумме магнитных индукций внешнего поля В 0 (поля, создаваемого намагничивающим током в вакууме) и поля микротоков В ' (поля, создаваемого молекулярными токами):

(133.1)

где В 0= m 0 Н (см. (109.3)).

Для описания поля, создаваемого молекулярными токами, рассмотрим магнетик в виде кругового цилиндра сечения S и длины l, внесенного в однородное внешнее магнитное поде с индукцией В 0. Возникающее в магнетике магнитное поле молекуляр­ных токов будет направлено противоположно внешнему полю для диамагнетиков и совпадать с ним по направлению для парамагнетиков. Плоскости всех молекулярных токов расположатся перпендикулярно вектору В 0, так как векторы их магнитных моментов p m антипараллельны вектору В 0 (для диамагнетиков) и параллельны В 0 (для парамагнетиков). Если рассмотреть любое сечение цилиндра, перпендикулярное его оси, то во внутренних участках сечения магнетика молекулярные токи соседних атомов направлены навстречу друг другу и взаимно компенсируются (рис. 189). Нескомпенсированными будут лишь молекулярные токи, выходящие на боковую поверхность цилиндра.

Ток, текущий по боковой поверхности цилиндра, подобен току в соленоиде и созда­ет внутри него поле, магнитную индукцию В' которого можно вычислить, учитывая формулу (119.2) для N = 1 (соленоид из одного витка):

(133.2)

где I' — сила молекулярного тока, l — длина рассматриваемого цилиндра, а магнит­ная проницаемость m принята равной единице.

С другой стороны, I'/l — ток, приходящийся на единицу длины цилиндра, или его линейная плотность, поэтому магнитный момент этого тока p = I'lS/l = I'V/l, где V — объем магнетика. Если Р — магнитный момент магнетика объемом V, то намаг­ниченность магнетика

(133.3)

Сопоставляя (133.2) и (133.3), получим, что

или в векторной форме

Подставив выражения для В 0 и В' в (133.1), получим

(133.4)

или

(133.5)

Как показывает опыт, в несильных полях намагниченность прямо пропорциональ­на напряженности поля, вызывающего намагничение, т. е.

(133.6)

где c — безразмерная величина, называемая магнитной восприимчивостью вещества. Для диамагнстихов c отрицательна (поле молекулярных токов противоположно вне­шнему), для парамагнетиков — положительна (поле молекулярных токов совпадает с внешним).

Используя формулу (133.6), выражение (133.4) можно записать в виде

(133.7)

откуда

Безразмерная величина

(133.8)

представляет собой магнитную проницаемость вещества. Подставив (133.8) в (133.7), придем к соотношению (109.3) В = m 0 m Н, которое ранее постулировалось.

Так как абсолютное значение магнитной восприимчивости для диа- и парамаг­нетиков очень мало (порядка 10–4 —10–6), то для них m незначительно отличается от единицы. Это просто понять, так как магнитное поле молекулярных токов значительно слабее намагничивающего поля. Таким образом, для диамагнетиков c<0 и m <1, для парамагнетиков c>0 и m >1.

Закон полного тока для магнитного поля в веществе (теорема о циркуляции вектора В) является обобщением закона (118.1):

где I и I' — соответственно алгебраические суммы макротоков (токов проводимости) и микротоков (молекулярных токов), охватываемых произвольным замкнутым кон­туром L. Таким образом, циркуляция вектора магнитной индукции В по произволь­ному замкнутому контуру равна алгебраической сумме токов проводимости и молеку­лярных токов, охватываемых этим контуром, умноженной на магнитную постоянную. Вектор В, таким образом, характеризует результирующее поле, созданное как мак­роскопическими токами в проводниках (токами проводимости), так и микроскопичес­кими токами в магнетиках, поэтому линии вектора магнитной индукции В не имеют источников и являются замкнутыми.

Из теории известно, что циркуляция намагниченности J по произвольному замкну­тому контуру L равна алгебраической сумме молекулярных токов, охватываемых этим контуром:

Тогда закон полного тока для магнитного поля в веществе можно записать также в виде

(133.9)

где I, подчеркнем это еще раз, есть алгебраическая сумма токов проводимости.

Выражение, стоящее в скобках в (133.9), согласно (133.5), есть не что иное, как введенный ранее вектор H напряженности магнитного поля. Итак, циркуляция вектора Н по произвольному замкнутому контуру L равна алгебраической сумме токов проводимости, охватываемых этим контуром:

(133.10)

Выражение (133.10) представляет собой теорему о циркуляции вектора Н.

 




Дата добавления: 2015-01-30; просмотров: 109 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.015 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав