Читайте также:
|
|
Абсолютная погрешность вычислений находится по формуле:
Знак модуля показывает, что нам без разницы, какое значение больше, а какое меньше. Важно, насколько далеко приближенный результат отклонился от точного значения в ту или иную сторону.
Относительная погрешность вычислений находится по формуле:
, или, то же самое:
Относительная погрешность показывает, на сколько процентов приближенный результат отклонился от точного значения. Существует версия формулы и без домножения на 100%, но на практике я почти всегда вижу вышеприведенный вариант с процентами.
После короткой справки вернемся к нашей задаче, в которой мы вычислили приближенное значение функции с помощью дифференциала.
Вычислим точное значение функции с помощью микрокалькулятора:
, строго говоря, значение всё равно приближенное, но мы будем считать его точным. Такие уж задачи встречаются.
Вычислим абсолютную погрешность:
Вычислим относительную погрешность:
, получены тысячные доли процента, таким образом, дифференциал обеспечил просто отличное приближение.
Ответ: , абсолютная погрешность вычислений
, относительная погрешность вычислений
Следующий пример для самостоятельного решения:
Пример 4
Вычислить приближенно с помощью дифференциала значение функции в точке
. Вычислить более точное значение функции в данной точке, оценить абсолютную и относительную погрешность вычислений.
Примерный образец чистового оформления и ответ в конце урока.
Многие обратили внимание, что во всех рассмотренных примерах фигурируют корни. Это не случайно, в большинстве случаев в рассматриваемой задаче действительно предлагаются функции с корнями.
Пример 5
Вычислить приближенно с помощью дифференциала значение функции в точке
Пример 6
Вычислить приближенно с помощью дифференциала , результат округлить до двух знаков после запятой.
Решение: Что нового в задании? По условию требуется округлить результат до двух знаков после запятой. Но дело не в этом, школьная задача округления, думаю, не представляет для вас сложностей. Дело в том, что у нас дан тангенс с аргументом, который выражен в градусах. Что делать, когда вам предлагается для решения тригонометрическая функция с градусами? Например, и т. д.
Алгоритм решения принципиально сохраняется, то есть необходимо, как и в предыдущих примерах, применить формулу
Записываем очевидную функцию
Значение нужно представить в виде
. Серьёзную помощь окажет таблица значений тригонометрических функций. (см. в конце лекции). Кстати, кто её не распечатал, рекомендую это сделать, поскольку заглядывать туда придется на протяжении всего курса изучения высшей математики.
Анализируя таблицу, замечаем «хорошее» значение тангенса, которое близко располагается к 47 градусам:
Таким образом:
После предварительного анализа градусы необходимо перевести в радианы. Так, и только так!
В данном примере непосредственно из тригонометрической таблицы можно выяснить, что . По формуле перевода градусов в радианы:
(формулы можно найти в той же таблице).
Дальнейшее шаблонно:
Таким образом: (при вычислениях используем значение
). Результат, как и требовалось по условию, округлён до двух знаков после запятой.
Ответ:
Пример 7
Вычислить приближенно с помощью дифференциала , результат округлить до трёх знаков после запятой.
Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
Как видите, ничего сложного, градусы переводим в радианы и придерживаемся обычного алгоритма решения.
Решения и ответы:
Пример 2: Решение: Используем формулу:
В данном случае: ,
,
Таким образом:
Ответ:
Пример 4: Решение: Используем формулу:
В данном случае: ,
,
Таким образом:
Вычислим более точное значение функции с помощью микрокалькулятора:
Абсолютная погрешность:
Относительная погрешность:
Ответ: , абсолютная погрешность вычислений
, относительная погрешность вычислений
Пример 5: Решение: Используем формулу:
В данном случае: ,
,
Таким образом:
Ответ:
Пример 7: Решение: Используем формулу:
В данном случае: ,
,
Таким образом:
Ответ:
Дата добавления: 2015-02-16; просмотров: 229 | Поможем написать вашу работу | Нарушение авторских прав |