Читайте также:
|
|
Дано:
m– масса насоса,9800 кг = 9,8 т;
g – ускорение свободного падения, 9,81 м/ ;
R – расчетное сопротивление траверсы, 550 МПа;
k – коэффициент условий работы, 0,85.
1. Определяем нагрузку (P), действующую на траверсу, по формуле:
P=Gn ![]() ![]() | (3.1) |
где G - вес поднимаемого груза;
m - масса поднимаемого груза;
g - ускорение свободного падения,g=9,81м/ ;
n - коэффициент перегрузки (n=1,1);
- коэффициент динамичности, (
= 1,1).
2. Рассчитываем максимальный изгибающий момент , возникающий в центральном сечении траверсы, по формуле
![]() | (3.2) |
где a - расстояние между точками подвеса груза, м.
3. Вычисляем требуемый момент сопротивления сечения траверсы по формуле
![]() | (3.3) |
где k - коэффициент условий работы;
R - расчетное сопротивление материала траверсы, МПа.
;
4.
Изм. |
Лист |
№ докум. |
Подпись |
Дата |
Лист |
Расчетная часть |
5. По полученному значению требуемого момента сопротивления выбрать профиль сечения с моментом сопротивления
соблюдая при этом условие:
.
Выбираем двутавр №27 с моментом сопротивления .
Вывод: выполнила расчёт траверсы, работающие на изгиб, выбрала
двутавр №27 с моментом сопротивления .
Изм. |
Лист |
№ докум. |
Подпись |
Дата |
Лист |
Расчетная часть |
Дано:
m – масса насоса, 8155 кг = 8,155 т;
α – угол, ;
φ˳ - коэффициент устойчивости стержня при продольном изгибе, 0,4;
R – расчетное сопротивление материала траверсы, 550 МПа;
µ - коэффициент приведения расчетной длины, 1;
g -ускорение свободного падения, 9,81 м/
1. Находим натяжение в каждой канатной подвеске, соединяющей траверсу с крюком грузоподъемного механизма, задавшись углом α= ;
![]() | (3.4) |
N= ,
2. Подсчитываем разрывное усилие, взяв канатную подвеску в две нити и определяем по ГОСТ коэффициент запаса прочности, как грузового каната с легким режимом работы, - 5;
![]() | (3.5) |
3. По найденному разрывному усилию, пользуясь таблицей ГОСТ 7668-80, подбираем стальной канат типа ЛК-РО конструкции 6 Х 36 (1 + 7 + 7/7 + + 14) + 1 с.с. для подвесок с характеристиками
δ – временное сопротивление разрыву, МПа | |
G – разрывное усилие, кН | 638,5 |
d – диаметр каната, мм | |
m – масса 1000 м каната, кг |
4. Выбираем профиль сечения траверсы – из одного двутавра.
5. Определяем сжимающее усилие в траверсе:
![]() | (3.6) |
где - коэффициент перегрузки (
- коэффициент динамичности (
6. Находим требуемую площадь поперечного сечения траверсы, задаваясь коэффициентом продольного изгиба φ˳ - 0,4:
![]() | (3.7) |
Изм. |
Лист |
№ докум. |
Подпись |
Дата |
Лист |
Расчетная часть |
k – коэффициент условий работы траверсы, равный 0,85;
R - расчетное сопротивление материала траверсы, МПа.
7. По принятому профилю и выбираем двутавр № 12 с произвольным поперечным сечением
Определяем также радиус инерции сечения
8. Находим расчетную длину траверсы считая, что концы траверсы закреплены шарнирно:
![]() | (3.8) |
где - коэффициент приведения расчетной длины;
фактическая длина стержня траверсы,
9. Определяем гибкость траверсы:
![]() | (3.9) |
=61,48
Причем необходимо, чтобы Здесь
максимально допустимая гибкость стержня траверсы для траверс из проката
Условие выполняется.
10. По найденному находим в таблице коэффициент продольного изгиба φ. При изменении
от 0 до 2000 (φ) изменяется от 0,19 до 1.
φ=0,212.
11. Полученное сечение траверсы проверяем на устойчивость:
![]() | (3.10) |
;
Изм. |
Лист |
№ докум. |
Подпись |
Дата |
Лист |
Расчетная часть |
правильное сечение траверсы.
Вывод: выполнила расчёт траверсы сплошного сечения, работающей на сжатие, выбрала номер двутавра №10 по ГОСТ 8239-89 и условие траверсы на устойчивость выполнена
Дата добавления: 2015-02-16; просмотров: 740 | Поможем написать вашу работу | Нарушение авторских прав |
|