|
Нелогические термины это:
Имя
2 определения:
А) Имя – знак языка, обозначающий ровно 1 предмет
Б) Имя – слово или словосочетание, которое внутри некоторого контекста употребления обозначает ровно 1 предмет.
Делятся на простые и сложные, сложные в свою очередь делятся на дескриптивные и функциональные. Функциональное имя – это простое имя с предметным функтором.
Также имена делятся на действительные и мнимые (или непустые и пустые), где
Имя является действительным относительно некоторого множества предметов, если его детонат содержится в данном множестве.
Имя является мнимым относительно некоторого множества предметов, если его детонат не содержится в данном множестве.
Детонат – это тот объект из множества, который именуется именем.
Предикаторы.
Предикатор – это знак свойства или отношения. Бывают одноместные и многоместные предикаторы.
Предметные функторы.
Предметные функторы – Это знаки предметно-функциональных качественных и количественных характеристик предметов.
Логические термины делятся на:
Пропозициональные связки, соответственно конъюнкцию, дизъюнкцию, импликацию и отрицание
Предицирующие связки
Операторы, которые делятся на кванторы общности и существования и дескрипторы
Модальные операторы, которые делятся на внешние и внутренние
3. Понятие функции, виды функций. Функциональный анализ языка.
N-местная функция f есть отображение, которое каждому элементу множества М1*М2*…*Мn ставит в соответствие ровно один элемент множества М.
Все функции при этом делятся на истинностно- истинностные, предметно-истинностные и предметно-предметные.
Знаками предметно-предметных функций являются предметными функторы. Имена являются знаками нульместных предметных функций.
При ответе важно знать следующие определения:
Кортежем называется линейно – упорядоченная последовательность предметов.
Декартовым произведением множеств М1, М2,… Мn является множество М1*М2*…Мn всех упорядоченных n-ок (или кортежей) <x1,x2,..xn>, что х1 – элемент первого множества, х2 – элемент второго множества, …xn – элемент n-го множества.
Также здесь надо рассказать анализ функций в 5 шагов:
Область возможных значений аргументов, то есть то множество, иногда это может быть универсум, но не всегда, откуда берутся значения.
2. Область определения – множество (может задаваться декартовым произведением) – набор всевозможных значений аргумента функции
Местность функции
Область значений
Дата добавления: 2015-02-16; просмотров: 102 | Поможем написать вашу работу | Нарушение авторских прав |