Читайте также:
|
|
Есть несколько указаний на то, что процесс образования угля не продолжался миллионы лет. Во-первых, вертикально расположенные стволы деревьев внутри угольных пластов предполагают, что они были погребены довольно быстро, иначе открытые части ствола сгнили бы до того, как произошла консервация (см. примеры у Морриса, 1974, с. 108).
Во-вторых, исследования древесины, превратившейся в каменный уголь, из богатых ураном пород плато Колорадо и Чаттануга Шейл, проводимые Робертом Джентри, могут показать, что уголь образовывался быстро и в сравнительно недавнее время. Эти породы содержат радиосвечения - микроскопические сферические участки метаморфического вытеснения, которые, как считается, вызваны распадом радиоактивных частиц, отложенных водой, протекавшей через древесину до того, как она превратилась в уголь. Одна необычная группа свечений, образованных распадом урана, кажется слишком молодой для возраста, предписанного униформистской геологией. Анализ этих свечений показывает, что им несколько тысяч, а не миллионов, лет (Джентри и другие, 1976).
ГОРЮЧИЕ СЛАНЦЫ, пиробитуминозные сланцы (а. petroliferous shale; н. Brennschiefer; ф. schistes соmbustibles, schistes bitumineux; и. pizarra bituminosa), —осадочные породыкарбонатно-глинистого (мергелистого), глинистого или кремнистого состава, содержащие 10-50%, редко до 60% сингенетичного осадконакопления органического вещества (керогена).
Горючие сланцы имеют коричневую, коричнево-жёлтую, серую, оливково-серую окраску, листоватую или массивную текстуру. Термин "горючие сланцы" иногда применяют для обозначения всех высокозольных твёрдых каустобиолитов, содержащих органические вещества различного происхождения и различных условий преобразования (углистых, битуминозных и липтобиолитовых сланцев). См. карту.
Кероген — сингенетичное осадконакоплению органические вещество с высоким выходом смол при сухой перегонке, при ограниченном выходе битумов, экстрагируемых органическими растворителями при низких температурах. Исходным материалом органического вещества горючих сланцев служила биомасса преимущественно низших водорослей (сапропелевые компоненты), в меньшей степени — высших растений (гумусовые компоненты) и частично животных организмов. По соотношению сапропелевых и гумусовых компонентов горючие сланцы подразделяются на сапропелиты (горючие сланцы Прибалтийского сланцевого бассейна, Волжского бассейна и Болтышского месторождения) и сапрогумиты (менилитовые сланцы Карпат). Отличительная генетическая особенность органического вещества большинства горючих сланцев — его накопление в донных осадках при нормальном кислородном режиме. Органическое вещество горючих сланцев характеризуется высоким содержанием водорода (7-10%), большим выходом летучих при термической переработке (до 90%), высокой удельной теплотой сгорания (Qbdaf = 29-37 МДж/кг). Основные минеральные компоненты горючих сланцев — кальцит, кварц и глинистые минералы, подчинённое значение имеют полевые шпаты,пирит, акцессорные минералы.
Для изучения состава и качества горючих сланцев используются углехимические методы исследований, регламентированные в CCCPгосударственными стандартами. В CCCP к пригодным для промышленного применения относятся горючие сланцы с удельной теплотой сгорания сухого топлива (Qbd) не менее 5 МДж/кг. Требования к горючим сланцам разрабатываемых месторождений значительно выше. Согласно действующим государственным стандартам, минимальная величина Qbd должна составлять: прибалтийские горючие сланцы для пылевидного сжигания 10,3 МДж/кг и для слоевого сжигания 11,7 МДж/кг, для переработки на газ и смолу — ленинградские 12,1 МДж/кг и эстонские 13,8 МДж/кг; горючие сланцы Кашпирского месторождения (Среднее Поволжье) для пылевидного сжигания 8,8 МДж/кг, для полукоксования 9,6 МДж/кг. Промышленной классификации горючих сланцев нет. Добываемые в Прибалтийском сланцевом бассейне горючие сланцы подразделяются по крупности кусков на 2 сорта (класса) — энергетические (0-25 мм) и технологические (25-125 мм). Большая часть месторождений горючих сланцев относится к платформенным и имеет горизонтальное и слабонаклонное залегание. В CCCP горючие сланцы известны в кембрийских, ордовикских, девонских, каменноугольных, юрских, палеоген-неогеновых отложениях.
Общепринятой оценки мировых запасов горючих сланцев нет. Общие потенциальные ресурсы горючих сланцев в мире оценены в 450 трлн. т (26 трлн. т сланцевой смолы). Основные ресурсы — 431 трлн. т горючих сланцев (24,6 трлн. т сланцевой смолы) — сосредоточены в США (штаты Колорадо, Юта, Вайоминг) и связаны с формацией Грин-Ривер. Крупные бассейны имеются вБразилии (Ирати, Параиба), KHP (Фушунь). Многочисленные месторождения горючих сланцев известны также в НРБ,Великобритании, ФРГ, Франции, Испании, Австрии, Канаде, Австралии, Италии, Швеции, СФРЮ. Общие ресурсы горючих сланцев в CCCP (1984) 214 млрд. т, балансовые запасы (категорий А+В+С1+С2) 12 млрд. т. Основные бассейны и месторождения CCCP (в скобках ресурсы и балансовые запасы, млрд. т): Прибалтийский бассейн (21,1 и 7,6), Волжский (29,7 и 3,3), Вычегодский (28 и 0),Тимано-Печорский (6 и 0,55), Сырдарьинский (24,6 и 0), Амударьинский (ресурсы 22,3), Кендерлыкское месторождение, восточный Казахстан (2,5 и 1,7), Болтышское месторождение, УССР (ресурсы 4,5).
В промышленном масштабе горючие сланцы добываются в CCCP (37 млн. т) и KHP (30-50 млн. т). В других странах (Франция, США, ФРГ, Австралия, Великобритания, Швеция, НРБ, ЮАР) добыча горючих сланцев велась в разные периоды. В CCCP горючие сланцы добываются на Эстонском (7 шахт и 4 разреза), Ленинградском (3 шахты) и Кашпирском (2 шахты) месторождениях в объёме соответственно 27,4; 5,0 и 0,8 млн. т в год товарного сланца, из них открытым способом 14,9 млн. т в год (1984). Подземная добычаосуществляется механизированным способом с применением главным образом камерно-столбовой системы, меньше — камер-лавами и в отдельных случаях — длинными столбами с отработкой их спаренными лавами. На Эстонском месторождении ведутся опытные работы по двуслойной комбайновой выемке пласта сланца с принудительным обрушением кровли. Открытая добыча — побестранспортным схемам. Основная часть (77%) добываемых в CCCP сланцев используется для сжигания на крупных ТЭЦ и ГРЭС; наиболее мощные из них — Прибалтийская и Эстонская — потребляют около 20 млн. т горючих сланцев в год. Технологическая переработка осуществляется на трёх крупных сланцеперерабатвающих предприятиях; Кохтла-Ярве, Кывыили (Эстонская CCP), Сланцы (Ленинградская область) и на небольшом Кашпирском сланцеперегонном заводе.
Переработка горючих сланцев в CCCP — полукоксованием в шахтных генераторах с целью получения сланцевой смолы и водно-растворимых фенолов и коксованием в камерных печах для производства бытового газа. Смола используется как жидкое топливо, компонент шпалопропиточного масла, для производства электродного кокса и др. Фенолы идут на производство синтетических дубителей, клея, лаков, мастик, модификаторов резины, тампонажных составов и других ценных химических продуктов. На Кашпирском сланцеперегонном заводе из горючих сланцев получают ихтиол. Твёрдые отходы переработки горючих сланцев (зола, сланцевый полукокс и кокс) широко используются в промышленности строительных материалов для производства минеральной ваты, сланцезольного портландцемента, силикатного кирпича, автоклавных изделий из тяжёлого сланцезольного бетона и газозолобетона, а также в дорожном строительстве и для известкования почв. Карбонатные отходы добычи и обогащения горючих сланцев применяются для производства строительного щебня. Горючие сланцы отдельных месторождений имеют высокое содержание Cu, Mo, U, Pb, Zn, V и оцениваются как рудное сырьё.
Нефть (из тур. neft, от персидск. нефт [9]) — природная маслянистая горючая жидкость со специфическим запахом, состоящая в основном из сложной смеси углеводородов различной молекулярной массы и некоторых других химических соединений. Относится к каустобиолитам[10] (ископаемое топливо[11]). Подавляющая часть месторождений нефти приурочена к осадочным породам[3][12]. Цвет нефти варьирует в буро-коричневых тонах (от грязно-жёлтого до тёмно-коричневого, почти чёрного), иногда она бывает чисто чёрного цвета, изредка встречается нефть окрашенная в светлый жёлто-зелёный цвет и даже бесцветная, а также насыщенно-зелёная нефть[13][14]. Имеет специфический запах, также варьирующий от легкого приятного до тяжелого и очень неприятного. Цвет и запах нефти в значительной степени обусловлены присутствием азот-, серо- и кислородсодержащих компонентов, которые концентрируются в смазочном масле и нефтяном остатке. Большинство углеводородов нефти (кромеароматических) в чистом виде лишено запаха и цвета.[15]
На протяжении XX века и в XXI веке нефть является одним из важнейших для человечества полезных ископаемых.
По химическому составу и происхождению нефть близка к природным горючим газам и озокериту. Эти ископаемые объединяют под общим названием петролитов[ кто? ]. Петролиты относят[ кто? ] к ещё более обширной группе так называемыхкаустобиолитов — горючих минералов биогенного происхождения, которые включают также другие ископаемые топлива (торф,бурые и каменный уголь, антрацит, сланцы).
Нефть обнаруживается вместе с газообразными углеводородами на глубинах от десятков метров до 5—6 км. Однако на глубинах свыше 4,5—5 км преобладают газовые и газоконденсатные залежи с незначительным количеством лёгких фракций. Максимальное число залежей нефти располагается на глубине 1—3 км. На малых глубинах и при естественных выходах на земную поверхность нефть преобразуется в густую мальту, полутвёрдый асфальт и другие образования — например, битуминозные пески и битумы.
Нефть — результат литогенеза. Она представляет собой жидкую (в своей основе) гидрофобную фазу продуктов фоссилизации (захоронения) органического вещества (керогена) в водно-осадочных отложениях.
Нефтеобразование — стадийный, весьма длительный (обычно 50—350 млн лет)[21] процесс, начинающийся ещё в живом веществе. Выделяется ряд стадий:
· осадконакопление — во время которого остатки живых организмов выпадают на дно водных бассейнов;
· биохимическая — процессы уплотнения, обезвоживания и биохимические процессы в условиях ограниченного доступа кислорода;
· протокатагенез — опускание пласта органических остатков на глубину до 1,5—2 км при медленном подъёме температуры и давления;
· мезокатагенез, или главная фаза нефтеобразования (ГФН) — опускание пласта органических остатков на глубину до 3—4 км при подъёме температуры до 150 °C. При этом органические вещества подвергаются термокаталитической деструкции, в результате чего образуются битуминозные вещества, составляющие основную массу микронефти. Далее происходит отгонка нефти за счёт перепада давления и эмиграционный вынос микронефти в песчаные пласты-коллекторы, а по ним в ловушки;
· апокатагенез керогена, или главная фаза газообразования (ГФГ) — опускание пласта органических остатков на глубину более 4,5 км при подъёме температуры до 180—250 °C. При этом органическое вещество теряет нефтегенерирующий потенциал и реализовывает метаногенерирующий потенциал.
И. М. Губкин выделял также стадию разрушения нефтяных местозарождений.
Убедительные доказательства биогенной природы нефте-материнского вещества были получены в результате детального изучения эволюции молекулярного состава углеводородов и их биохимических предшественников (прогениторов) в исходных организмах, в органическом веществе осадков и пород и в различных нефтях из залежей. Важным явилось обнаружение в составе нефти хемофоссилий — весьма своеобразных, часто сложно построенных молекулярных структур явно биогенной природы, то есть унаследованных (целиком или в виде фрагментов) от органического вещества. Изучение распределения стабильных изотопов углерода (12C, 13C) в нефти, органическом веществе пород и в организмах (А. П. Виноградов, Э. М. Галимов)[22] тоже подтвердило неправомочность неорганических гипотез.
Тем не менее, и в настоящее время некоторые учёные (преимущественно в России) отстаивают неорганические гипотезы происхождения нефти. В частности, утверждается, что к образовавшейся в древние эпохи органическим путем нефти постоянно добавляются малые количества нефти, якобы образующиеся неорганическим путем. Если это верно, то это означает гипотетическую неисчерпаемость запасов нефти[23][ неавторитетный источник? 173 дня ].
Геология нефти[править | править исходный текст]
Основная статья: Геология нефти
Заключающие нефть породы обладают сравнительно высокой пористостью и достаточной для её извлечения проницаемостью. Породы, допускающие свободное перемещение и накопление в них жидкостей и газов, называются коллекторами. Пористость коллекторов зависит от степени отсортированности зёрен, их формы и укладки, а также и от наличия цемента. Проницаемость определяется размером пор и их сообщаемостью. Главнейшими коллекторами нефти являются пески, песчаники, конгломераты, доломиты, известняки и другие хорошо проницаемые горные породы, заключённые среди таких слабопроницаемых пород, как глины илигипсы. При благоприятных условиях коллекторами могут быть трещиноватые метаморфические и изверженные породы, находящиеся в соседстве с осадочными нефтеносными породами.
Весьма продолжительное время (со 2-й половины XIX в.) геологи полагали, что нефтяные залежи приурочиваются почти исключительно к антиклинальным складкам, и только в 1911 И. М. Губкиным был открыт в Майкопском районе новый тип залежи, приуроченной к аллювиальным пескам и получившей название «рукавообразной». Спустя более 10 лет подобные залежи были обнаружены в США. Дальнейшее развитие разведочных работ в СССР и в США завершилось открытием залежей, связанных с соляными куполами, приподнимающими, а иногда и протыкающими осадочные толщи. Изучение нефтяных месторождений показало, что образование нефтяных залежей обусловлено различными структурными формами изгибов пластов, стратиграфическими соотношениями свит и литологическими особенностями пород. Предложено несколько классификаций месторождений и залежей нефти как в России, так и за рубежом. Нефтяные месторождения различаются друг от друга по типу структурных форм и условиям их образования. Залежи нефти и газа различаются друг от друга по формам ловушек-коллекторов и по условиям образования в них скоплений нефти.[ источник не указан 404 дня ]
Дата добавления: 2015-01-30; просмотров: 118 | Поможем написать вашу работу | Нарушение авторских прав |