Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Второй закон Кирхгофа

Читайте также:
  1. C. розробка статуту підприємства та формування господарського законодавства; Верно
  2. II-й закон термодинаміки
  3. II. ЗАКОНЫ ПОСТОЯННОГО ТОКА
  4. II. Из данных слов выберите то, которое закончит предложение.
  5. II. Подзаконные
  6. III тип. Для каждого вопроса, или, незаконченного утверждения один или несколько ответов являются правильными. Выберите по таблице.
  7. P Научитесь доверять своему партнеру, доверяйте своим отношениям и поступайте так, чтобы они никогда не закончились.
  8. R закон перехода количественных изменений в качественные
  9. VI Основные закономерности психического развитя человека
  10. А) в пределах санкции статьи КоАП РФ или закона субъекта РФ об административных правонарушениях, предусматривающей ответственность за соответствующее правонарушение

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

(1.4)

,

где n – число источников ЭДС в контуре;
m – число элементов с сопротивлением Rk в контуре;
Uk = RkIk – напряжение или падение напряжения на k -м элементе контура.

Для схемы (рис. 1.2) запишем уравнение по второму закону Кирхгофа:

E = UR + U 1.

Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контру, включая источники ЭДС равна нулю

(1.5)

.

При записи уравнений по второму закону Кирхгофа необходимо:

1) задать условные положительные направления ЭДС, токов и напряжений;

2) выбрать направление обхода контура, для которого записывается уравнение;

3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны.

Запишем уравнения по II закону Кирхгофа для контуров электрической схемы (рис. 1.2):

контур I: E = RI + R 1 I 1+ r 0 I,

контур II: R 1 I 1+ R 2 I 2=0,

контур III: E = RI + R 2 I 2+ r 0 I.

В действующей цепи электрическая энергия источника питания преобразуется в другие виды энергии. На участке цепи с сопротивлением R в течение времени t при токе I расходуется электрическая энергия

(1.6)

W = I 2 Rt.

Скорость преобразования электрической энергии в другие виды представляет электрическую мощность

(1.7)

.

Из закона сохранения энергии следует, что мощность источников питания в любой момент времени равна сумме мощностей, расходуемой на всех участках цепи.

(1.8)

.

Это соотношение (1.8) называют уравнением баланса мощностей. При составлении уравнения баланса мощностей следует учесть, что если действительные направления ЭДС и тока источника совпадают, то источник ЭДС работает в режиме источника питания, и произведение EI подставляют в (1.8) со знаком плюс. Если не совпадают, то источник ЭДС работает в режиме потребителя электрической энергии, и произведение EI подставляют в (1.8) со знаком минус. Для цепи, показанной на рис. 1.2 уравнение баланса мощностей запишется в виде:

EI = I 2(r 0+ R)+ I 12 R 1+ I 22 R 2.

При расчете электрических цепей используются определенные единицы измерения. Электрический ток измеряется в амперах (А), напряжение – в вольтах (В), сопротивление – в омах (Ом), мощность – в ваттах (Вт), электрическая энергия – ватт-час (Вт-час) и проводимость – в сименсах (См)

Кроме основных единиц используют более мелкие и более крупные единицы измерения: миллиампер (1 мA = 10–3 А), килоампер (1 кA = 103 А), милливольт (1 мВ = 10–3 В), киловольт (1 кВ = 103 В), килоом (1 кОм = 103 Ом), мегаом (1 МОм = 106 Ом), киловатт (1 кВт = 103 Вт), киловатт-час (1 кВт-час = 103 ватт-час).

6. Энергетический баланс в электрических цепях. При протекании токов по сопротивлениям в последних выделяется теплота. На основании закона сохранения энергии количество теплоты, вы-деляющееся в единицу времени в сопротивлениях схемы, должно равняться энергии, доставляемой за то же время источником питания. Если направление тока I, протекающего через источник ЭДС E, совпадает с направлением ЭДС, то источник ЭДС доставляет в цепь энергию в единицу времени (мощность), равную EI, и произведение EI входит в уравнение энергетического баланса с положительным знаком.
Если же направление тока I встречно направлению ЭДС Е, то источник ЭДС не поставляет энергию, а потребляет ее (например, заряжается аккумулятор), и произведение EI войдет в уравнение энергетического баланса с отрицательным знаком.
Уравнение энергетического баланса при питании только от источников ЭДС имеет вид

Когда схема питается не только от источников ЭДС, но и от источников тока, т. е. к отдельным узлам схемы подтекают и от них утекают токи источников тока, при составлении уравнения энерге-тического баланса необходимо учесть и энергию, доставляемую источниками тока. Допустим, что к узлу а схемы подтекает ток I от источника тока, а от узла b этот ток утекает. Доставляемая источником тока мощность равна UabJ. Напряжение Uab и токи в ветвях схемы должны быть подсчитаны с учетом тока, подтекающего от источника тока. Последнее проще всего сделать по методу узловых потенциалов (см. § 2.22). Общий вид уравнения энергетического баланса:

Для практических расчетов электрических цепей разработаны методы, более экономичные в смысле затраты времени и труда, чем метод расчета цепей по законам Кирхгофа. Рассмотрим эти методы.

7. Метод контурных токов. При расчете методом контурных токов полагают, что в каждом независимом контуре схемы течет свой контурный ток. Уравнения составляют относительно контурных токов, после чего через них определяют токи ветвей.
Таким образом, метод контурных токов можно определить как метод расчета, в котором за искомые принимают контурные токи. Число неизвестных в этом методе равно числу уравнений, которые необходимо было бы составить для схемы по второму закону Кирхгофа.
Следовательно, метод контурных токов более экономен при вычислительной работе, чем метод на основе законов Кирхгофа (в нем меньше число уравнений).
Вывод основных расчетных уравнений приведем применительно к схеме рис. 2.12, в которой два независимых контура. Положим, что в левом контуре по часовой стрелке течет контурный ток I11 а в правой (также по часовой стрелке) — контурный ток I22. Для каждого контура составим уравнения по второму закону Кирхгофа. При этом учтем, что по смежной ветви (с сопротивлением R5) течет сверху вниз ток I11. — I22 Направления обхода контуров примем также по часовой стрелке.

 

 

Для второго контура

 

 

В уравнении (б) множитель при токе I11, являющийся суммой сопротивлений первого контура, обозначим через R11, множитель при токе I22 (сопротивление смежной ветви, взятое со знаком минус) — через R12.
Перепишем эти уравнения следующим образом:

 

 

Здесь

 

 

где R11 — полное или собственное сопротивление первого контура; R12 — сопротивление смежной ветви между первым и вторым контурами, взятое со знаком минус; E11 — контурная ЭДС первого контура, равная алгебраической сумме ЭДС этого контура (в нее со знаком плюс входят те ЭДС, направления которых совпадают с направлением обхода контура); R22 — полное или собственное сопротивление второго контура; R21 — сопротивление смежной ветви у между первым и вторым контурами, взятое со знаком минус; E22 — контурная ЭДС второго контура.

В общем случае можно сказать, что сопротивление смежной ветви между K- и T-контурами (Rkm) входит в уравнение со знаком минус, если направления контурных токов Ikk и ITT вдоль этой ветви встречны, и со знаком плюс, если направления этих токов согласны.

Если в схеме больше двух контуров, например три, то система уравнений выглядит следующим образом:

 

 

или в матричной форме

 

 

Рекомендуется для единообразия в знаках сопротивлений с разными индексами все контурные токи направлять в одну и ту же сторону, например по часовой стрелке.
В результате решения системы уравнений какой-либо один или несколько контурных токов могут оказаться отрицательными.
В ветвях, не являющихся смежными между соседними контурами (например, в ветви с сопротивлениями R1, R2 рис. 2.12), найденный контурный ток является действительным током ветви. В смежных ветвях через контурные токи определяют токи ветвей. Например, в ветви с сопротивлением R5 протекающий сверху вниз ток равен разности Ш11R22.
Если в электрической цепи имеется п независимых контуров, то число уравнений тоже равно n.
Общее решение системы n уравнений оносительно тока IKK:

 

 

— определитель системы.
Алгебраическое дополнение Δkm получено из определителя Δ путем вычеркивания K-го столбца и m -й строки и умножения полученного определителя на (—1)k + m.
Если из левого верхнего угла определителя провести диагональ в его правый нижний угол (главная диагональ) и учесть, что Rkm = Rkmk, то можно убедиться в том, что определитель делится на две части, являющиеся зеркальным отображением одна другой. Это свойство определителя называют симметрией относительно главной диагонали. В силу симметрии определителя относительно главной диагонали Δkm = Δmk
Пример 13. Найти токи в схеме (рис. 2.13) методом контурных токов. Числовые значения сопротивлений в омах и ЭДС в вольтах указаны на рисунке.
Решение. Выберем направления всех контурных токов I11, I22 и I33 по часовой стрелке. Определяем: R11 = 5 + 5 + 4 = 14 Ом; R22 = 5 + 10 + 2 = 17 Ом; R33 = 2+ + 2+ 1 =5 Ом; К12 = К21 = — 5 Ом; R13 = R31 = 0; R23 = R32 = - 2 Ом; E11 = -10 В; E33 = -8.

 

 

Записываем систему уравнений:

 

 

определитель системы

 

 

подсчитаем контурные токи

 

 

Ток в ветви cm Icm = I11 - I22 = -0,634-0,224=-0,86 A. Ток в ветви am Iam = I22 - I33 = 0,224 + 1,51 = 1,734 A.
Формула (2.5) в ряде параграфов используется в качестве исходной при рассмотрении таких важных вопросов теории линейных электрических цепей, как определение входных и взаимных проводимостей ветвей, принцип взаимности, метод наложения и линейные соотношения в электрических цепях.
Составлению уравнений по методу контурных токов для схем с источниками тока присущи некоторые особенности. В этом случае полагаем, что каждая ветвь с источником тока входит в контур, замыкающийся через ветви с источниками ЭДС и сопротивлениями, и что токи в этих контурах известны и равны токам соответствующих источников тока. Уравнения составляют лишь для контуров с неизвестными контурными токами. Если для схемы рис. 2.14, а принять, что контурный ток I11 = J течет согласно направлению часовой стрелки по первой и второй ветвям, а контурный ток I22= I3 замыкается также по часовой стрелке по второй и третьей ветвям, то, согласно методу контурных токов, получим только одно уравнение с неизвестным током I22: (R2 + R3)I22 - R2I = E.
Отсюда I22 = и ток второй ветви I2 = I 11 - I 22/

 

 




Дата добавления: 2015-01-30; просмотров: 58 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.01 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав