Читайте также:
|
|
ЭЛЕКТРО́ННАЯ МИКРОСКОПИ́Я – совокупность методов исследования с помощью электронных микроскопов микроструктур тел, их локального состава и локализованных на поверхностях или в микрообъемах тел электрических и магнитных полей.
На первом этапе электронная микроскопия применялась в основном для наблюдения биологических объектов, причем для интерпретации снимков использовался лишь адсорбционный контраст. Однако появление метода реплик — отпечатков, сделанных с поверхности, и особенно декорирование их металлами (1940-е –1950-е г.г.) позво-лило успешно изучать неорганические материалы — сколы и изломы кристаллов. Примерно с начала 1950-х годов начинаются интенсивные попытки исследования тонких фольг материалов на просвет. Это стало возможным в результате существенного повышения, до 100кВ, ускоряющего напряжения в электронных микроскопах. С этого периода начинается бурное развитие электронно-микроскопи-ческой техники, электронная микроскопия находит все более широкое применение в физическом материаловедении. Одной из важнейших причин этого, по-видимому, является возможность наблюдать в одном эксперименте, как изображение объекта в реальном пространстве, так и его дифракционную картину. Поэтому электронная мик-роскопия является наиболее подходящим методом исследования структур сложных кристаллических объектов.
Электронную микроскопию можно разделить на 3 группы:
- Просвечивающая электронная микроскопия (Transmission electron microscopy)
ПЭМ является наиболее универсальным классическим методом исследования струк-турных дефектов кристаллов, используется непосредственно для анализа морфологи-ческих особенностей, ориентации дефектов относительно решетки матрицы, опреде-ления их размеров. Для работы на просвечивающих электронных микроскопах требу-ются специально приготовленные тонкие препараты – реплики или фольги, прозрачные для электронов. Наиболее распространены электронные микроскопы с ускоряющим напряжением 100 и 200, 300 и 400 кВ, при этом исследуемые образцы должны иметь различную толщину в зависимости от величины ускоряющего напряже-ния (для 100 кВ в случае кремния оптимальная толщина 0,3—0,4 мкм, для 200 кВ — от 0,6—0,8мкм до 1мкм). Реплики используются для наблюдения микрорельефа, фак-туры поверхности исследуемого образца. Сама реплика – это тонкая пленка какого-то вещества, на которой получают отпечаток микрорельефа поверхности. Это осущест-вляется, например, путем напыления угольной пленки или нанесения пленки лака или желатина. Метод реплик позволяет получать информацию о структуре поверхности образцов. Фольги – тонкие пленки, которые получают из массивных образцов, причем утонение образца необходимо вести таким образом, чтобы не внести в исследуемую область дополнительных нарушений. Утоненный образец, как и снятую реплику, помещают на специальную сетку с крупными отверстиями и размещают в колонне микроскопа. Именно на фольгах ведутся исследования дефектообразования в кристаллах.
Длина волны электронов с энергией 100 кэВ примерно равна 0,004 нм, а разрешаю-щая способность обычного просвечивающего электронного микроскопа составляет 0,15 нм. В дефектной области наблюдается изменение интенсивности контраста, поскольку в области дефекта или искажена решетка, или наличествует поле упругих напряжений вокруг дислокаций и выделений. При малой деформации решетки матри-цы дефект может не выявляться. Кроме того, поскольку просматривается маленький участок при наблюдении дефектов с плотностью менее 108см3, для обнаружения дефекта требуется просмотр большого количества фольг.
- Просвечивающая электронная микроскопия высокого разрешения
ВРЭМ практически новый метод исследования, позволяет наблюдать непосредстве-нно кристаллическую решетку материала — получать изображение отдельных плос-костей кристаллической решетки. Наименьшее межплоскостное расстояние, которое удалось разрешить с помощью электронной микроскопии высокого разрешения, -0,1—0,2 нм. Особенностью ВРЭМ является использование специальной оптики нового поколения, а определяющим при формировании изображения является не дифракционный, а абсорбционный контраст.
- Растровая электронная микроскопия
Использование растровой развертки электронного луча по поверхности образца является одним из способов автоматизации измерений. По своим возможностям РЭМ является продолжением оптической микроскопии, расширяющей ее возможности в исследовании топологии поверхностей кристаллических материалов. Разрешение наиболее распространенных РЭМ достигает 5—10 нм при недостижимой для других видов микроскопов глубине резкости 0,6—0,8 мм, причем при изучении топологии поверхности вполне достаточно использование низковольтных РЭМ с диаметром пучка электронов 10 мкм. Обычно используют пучок электронов с энергией 10—30 кэВ, хотя в отдельных случаях могут использоваться электроны с энергией в несколь-ко сотен эВ. В РЭМ изображение объекта формируется последовательно по точкам и является результатом взаимодействия электронного пучка (зонда) с поверхностью образца. Каждая точка образца последовательно облучается сфокусированным элек-тронным пучком, который перемещается по исследуемой поверхности подобно сканированию электронного луча в телевизионных системах. При взаимодействии электронов зонда с веществом возникают ответные сигналы различной физической природы, которые используются для синхронного построения изображения на экране монитора. Для формирования изображения не используется электронно-оптическая система, изменение масштабов изображения осуществляется радиотехническими средствами. Поэтому растровые электронные микроскопы принципиально отличаются от микроскопов, как дифракционных приборов, в обычном понимании этого термина. По существу РЭМ — это телевизионный микроскоп.
Одним из существенных достоинств РЭМ является возможность в целом ряде случа-ев проводить исследования образцов практически без предварительной подготовки поверхности. Толщина образцов для РЭМ не имеет определяющего значения. Образ-цы могут иметь размеры порядка нескольких десятков мм, и ограничиваются только конструктивными возможностями держателя. Область применения методов РЭМ чрезвычайно широка – исследование топографии поверхности, приповерхностных структурных дефектов, электрически активных дефектов, электрических и магнитных доменов, определение атомного состава поверхности.
Дата добавления: 2015-05-05; просмотров: 89 | Поможем написать вашу работу | Нарушение авторских прав |
<== предыдущая лекция | | | следующая лекция ==> |
Гистохимические методы | | | Фазово-контрастная микроскопия |