Читайте также: |
|
Количество разрядов и частота дискретизации АЦП
Аналогово-цифровой преобразователь (АЦП) - это устройство, превращающее входящий в аудиокарту звук (электрические звуковые колебания) в цифровую форму.
Количество разрядов и частотой дискретизации ЦАП
Цифрово-аналоговый преобразователь (ЦАП) - это устройство, превращающее звук, существующий внутри компьютера в цифровой форме, в электрические звуковые колебания на выходе аудиоплаты.
34.Устройство звуковой карты.
Звуковые платы состоят из четырех основных частей: блока синтезатора MIDI, блока преобразования: аналогово-цифрового (АЦП) и цифроаналогового (ЦАП), а также блока MPU MIDI Processing Unit и блока микшера.
Всё остальное не знаю нужно или нет смотрите сами.
По конструкции звуковые платы делят на обычные и дочерние платы, которые подключаются к 26-контактному разъему на основной звуковой плате. Дочерние платы добавляют к основным возможностям некоторые дополнительные, например, более качественную поддержку MIDI-команд. Несмотря на то, что звуковые платы с интерфейсом PCI имеют 32-разрядную шину данных, звук все равно обрабатывается по 16-битной «сетке», при этом цифровые данные передаются и обрабатываются с использованием всей ширины шины (32 бит).
Звуковая плата имеет набор разъемов для подключения внешних сигналов:
– входные разъемы – микрофон, линейный вход, CD–ROM аналоговый (размешен на самой плате), CD–ROM цифровой (на некоторых PCI платах);
– выходные разъемы – линейный выход, выход на колонки или наушники. Встроенный усилитель может иметь мощность усиления до 4 Вт на каждый канал, некоторые звуковые платы имеют усилитель с выходной мощностью, которая достаточна только для наушников.
Цифровой интерфейс для передачи звуковых сигналов S/PDIF (Sony/Phillips Digital Interface Format), все чаще применяемый на современных звуковых платах, представляет собой электрически упрощенный вариант студийного интерфейса AES/EBU (Audio Engineers Society/European Broadcast Union) и используется для передачи звука между блоками бытовой аппаратуры, для вывода сигнала с компакт-диска и т. п.
На некоторых звуковых платах встречаются разъемы для интерфейса IDE, которые используются для подключения привода CD–ROM. Но такое решение нельзя назвать нормальным, т. к., во-первых, низкая производительность явно недостаточна для современных скоростных приводов, во-вторых, не каждая операционная система сможет нормально распознать устройство, подключенное к контроллеру на звуковой плате.
В программное обеспечение (драйвер) звуковой платы обычно входит программа-микшер, которая обеспечивает регулировку входных и выходных сигналов, а также регулировку тембра по низким и высоким частотам.
^ Цифроаналоговый преобразователь (Digital Analog Converter, DAC, ЦАП) обеспечивает воспроизведение звуковых файлов с уровнем качества от кассетного магнитофона до звукового компакт-диска. Преобразование цифра – аналог может осуществляться либо в режиме программной передачи данных, либо при помощи каналов прямого доступа к памяти DMA.
^ Аналого-цифровой преобразователь (Analog Digital Converter, ADC, АЦП) должен обеспечивать обратный процесс: возможность записи звука в файл с тем же уровнем качества. Преобразование аналог–цифра может осуществляться либо в режиме программной передачи данных, либо при помощи каналов прямого доступа к памяти DMA.
Узлы ЦАП и АЦП обычно оформляются в виде отдельной микросхемы (AD1848, CS4231, СТ1730 и т. д.) либо интегрируются внутрь одной из больших микросхем на плате. От качества преобразования во многом зависит качество как оцифровки, так и воспроизведения звука, хотя в неменьшей степени она зависит и от применяемых усилителей.
^ 2. Блок синтезатора. Блок обработки команд MIDI (синтезатор) должен обеспечивать имитацию звучания музыкальных инструментов и воспроизведение различных звуков при выполнении так называемых MIDI–команд. Синтезатор может быть выполнен как на основе синтеза FM (Frequency Modulation), так и на основе таблицы волн WT (Wave Table). При использовании в музыке звучаний реальных инструментов для синтеза лучше всего подходит метод WT, для создания же новых тембров более удобен FM.
3. Блок MPU (MIDI Processing Unit) осуществляет передачу данных по внешнему MIDI-интерфейсу, выведенному на разъем игрового порта и разъем для дочерних плат. Обычно более или менее совместим со стандартом MPU 401, но часто требуется программная поддержка со стороны драйверов. Интерфейс MIDI имеют практически все профессиональные и полупрофессиональные клавишные синтезаторы.
^ 4. Блок микшера. Микшер представляет собой набор управляемых усилителей, коэффициент усиления которых регулируется звуковым процессором. При необходимости смешивания сигналов от разных источников (например, с CD–ROM и линейного входа) может оказаться, что линейный вход сильно зашумлен и даже в отсутствие полезного сигнала на нем эти шумы будут присутствовать в выходном сигнале платы. Для их подавления придется заглушить неиспользуемые в данный момент источники сигнала в программе управления микшером платы. Микшер большинства звуковых плат совместим с Sound Blaster Pro.
35.Сетевая карта.
Сетевая карта или сетевой адаптер - это плата расширения, вставляемая в разъем материнской платы (main board) компьютера. Также существуют сетевые адаптеры стандарта PCMCIA для нотебуков (notebook), они вставляются в специальный разъем в корпусе нотебука. Или интегрированные на материнской плате компьютера, они подключаются по какой либо локальной шине. Появились Ethernet сетевые адаптеры, подключаемые к USB (Universal Serial Bus) порту компьютера. Позволяющие подключаться к сети без вскрытия корпуса компьютера.
Сетевые платы характеризуются своей
Для определения точки назначения пакетов (frames) в сети Ethernet используется MAC-адрес. Это уникальный серийный номер присваиваемый каждому сетевому устройству Ethernet для идентификации его в сети. MAC-адрес присваивается адаптеру его производителем, но может быть изменен с помощью программы. Делать это не рекомендуется (только в случае обнаружения двух устройств в сети с одним MAC- адресом). При работе сетевые адаптеры просматривают весь проходящий сетевой трафик и ищут в каждом пакете свой MAC-адрес. Если таковой находится, то устройсво (адаптер) декодирует этот пакет. Существуют также специальные способы по рассылке пакетов всем устройствам сети одновременно (broadcasting). MAC-адрес имеет длину 6 байт и обычно записывается в шестнадцетиричном виде, например
12:34:56:78:90:AB
Двоеточия могут и отсутствовать, но их наличие делает число более читаемым. Каждый производитель присваивает адреса из принадлежащего ему диапазона адресов.
36.Модемы, их назначение, виды и качество передачи сигналов.
Модем – это устройство, предназначенное для модуляции сигнала, то есть для преобразования аналогового сигнала в цифровой. Именно от слова «модуляция» и произошло название «модем». С помощью модема пользователь выходит в сеть Интернет. Первое аналогичное устройство появилось в 1979 году. За это время, конечно, много изменилось. Изменилась и скорость, которая может сильно отличаться у пользователей, поэтому некоторые хотят измерить скорость интернета.
Виды модемов
1) Оптоволоконный модем. Устройство подсоединяет компьютер к глобальной сети посредством оптоволоконного кабеля.
2) Кабельный модем. Он позволяет передавать сигнал через стандартный телевизионный кабель. При этом работа в Интернете никак не влияет на качество передачи телевизионного сигнала.
3) ISDN-модемы. Такие модемы служат для работы в цифровых сетях – с их помощью возможно передавать голос, текстовую информацию и графику в одно и то же время с постоянной высокой скоростью.
4) ADSL-модемы. Они подключаются к телефонной линии, но работают по особой технологии, благодаря чему скорость доступа возрастает в разы. Такие модемы не распространены в связи с тем, что требуется специальное сложное оборудование, которое не всегда себя оправдывает.
37.Функциональная схема модема. Классификации модемов.
Модемы могут быть классифицированы:
1. по типу используемого канала:
2. по скорости передачи информации:
3. по области применения:
4. по конструктивному исполнению:
38.Система охлаждения и её виды.
Виды систем охлаждения конденсаторов и водоохладителей
Применяют следующие системы охлаждения: водяную, воздушную и испарительную.
1)При водяной системе охлаждения вода служит промежуточным теплоносителем, с помощью которого теплота, выделяемая при конденсации хладагента, отводится в воздух.
2)При воздушной системе охлаждения теплота, выделяемая в конденсаторе холодильной установки, отводится непосредственно в воздух.
3)Испарительная система охлаждения конденсаторов является комбинацией водяной и воздушной систем охлаждения и представляет собой аппарат, в котором совмещены процессы охлаждения элементов конденсаторов водой и охлаждения этой воды воздухом.
39.Пассивное охлаждение.
Пассивное охлаждение - это когда деталь охлаждается не вентилятором, а специальной железкой, которая создает температуру, при которой устройство работает.
На самой железке ничего нет, это просто металл, в отличии от fan охлаждения
пассивное бесшумно.
Активное- куллеры
Пассивное – отвод тепла
40.Воздушное охлаждение.
Принцип работы заключается в непосредственной передаче тепла от нагревающегося компонента нарадиатор за счёт теплопроводности материала или с помощью тепловых трубок (или их разновидностей, таких как термосифон и испарительная камера). Радиатор излучает тепло в окружающее пространство тепловым излучением и передаёт тепло теплопроводностью окружающему воздуху, что вызывает естественную конвекцию окружающего воздуха. Для увеличения излучаемого радиатором тепла применяют чернение поверхности радиатора.
41.Жидкостные системы охлаждения.
Принцип работы - передача тепла от нагревающегося компонента радиатору с помощью рабочей жидкости, которая циркулирует в системе. В качестве рабочей жидкости чаще всего используется дистиллированная вода, часто с добавками имеющими бактерицидный и/или антигальванический эффект; иногда - масло, антифриз, жидкий металл, или другие специальные жидкости.
Жидкость должна обладать высокой теплопроводностью, чтобы свести к минимуму перепад температур между стенкой трубки и поверхностью испарения, а также высокой удельной теплоёмкостью, чтобы при меньшей скорости циркуляции жидкости в контуре обеспечить большую эффективность охлаждения.
42.«Экстремальные» системы охлаждения
Азотная это охлаждение жидким азотом. Принцип прост - к сосуду с жидким азотом(сосуд Дьюара) подсоединена трубка через которую подаётся газообразный азот к процессору. Но есть одно НО - возможно образование конденсата.
43.Сетевое оборудование и его виды.
1. Витая пара (TP - Twisted Pair)– это кабель, выполненный в виде скрученной пары проводов. Он может быть экранированным и неэкранированным. Экранированный кабель более устойчив к электромагнитным помехам. Витая пара наилучшим образом подходит для малых учреждений. Недостатками данного кабеля является высокий коэффициент затухания сигнала и высокая чувствительность к электромагнитным помехам, поэтому максимальное расстояние между активными устройствами в ЛВС при использовании витой пары должно быть не более 100 метров.
2. Коаксиальный кабель состоит из одного цельного или витого центрального проводника, который окружен слоем диэлектрика. Проводящий слой алюминиевой фольги, металлической оплетки или их комбинации окружает диэлектрик и служит одновременно как экран против наводок. Общий изолирующий слой образует внешнюю оболочку кабеля.
Коаксиальный кабель может использоваться в двух различных системах передачи данных: без модуляции сигнала и с модуляцией. В первом случае цифровой сигнал используется в таком виде, в каком он поступает из ПК и сразу же передается по кабелю на приемную станцию. Он имеет один канал передачи со скоростью до 10 Мбит/сек и максимальный радиус действия 4000 м. Во втором случае цифровой сигнал превращают в аналоговый и направляют его на приемную станцию, где он снова превращается в цифровой. Операция превращения сигнала выполняется модемом; каждая станция должна иметь свой модем. Этот способ передачи является многоканальным (обеспечивает передачу по десяткам каналов, используя для этого всего лишь один кабель). Таким способом можно передавать звуки, видео сигналы и другие данные. Длина кабеля может достигать до 50 км.
3. Оптоволоконный кабель является более новой технологией, используемой в сетях. Носителем информации является световой луч, который модулируется сетью и принимает форму сигнала. Такая система устойчива к внешним электрическим помехам и таким образом возможна очень быстрая, секретная и безошибочная передача данных со скоростью до 2 Гбит/с. Количество каналов в таких кабелях огромно. Передача данных выполняется только в симплексном режиме, поэтому для организации обмена данными устройства необходимо соединять двумя оптическими волокнами (на практике оптоволоконный кабель всегда имеет четное, парное кол-во волокон). К недостаткам оптоволоконного кабеля можно отнести большую стоимость, а также сложность подсоединения.
4. Радиоволны в микроволновом диапазоне используются в качестве передающей среды в беспроводных локальных сетях, либо между мостами или шлюзами для связи между локальными сетями. В первом случае максимальное расстояние между станциями составляет 200 - 300 м, во втором - это расстояние прямой видимости. Скорость передачи данных - до 2 Мбит/с.
Беспроводные локальные сети считаются перспективным направлением развития ЛС. Их преимущество - простота и мобильность. Также исчезают проблемы, связанные с прокладкой и монтажом кабельных соединений - достаточно установить интерфейсные платы на рабочие станции, и сеть готова к работе.
Выделяют следующие виды сетевого оборудования.
44.Активное сетевое оборудование.
Под этим названием подразумевается оборудование, за которым следует некоторая «интеллектуальная» особенность. То есть маршрутизатор, коммутатор (свитч) и т.д. являются активным сетевым оборудованием. Напротив — повторитель (репитер)] и концентратор (хаб) не являются АСО, так как просто повторяют электрический сигнал для увеличения расстояния соединения или топологического разветвления и ничего «интеллектуального» собой не представляют. Но управляемые хабы относятся к активному сетевому оборудованию, так как могут быть наделены некой «интеллектуальной особенностью»
45.Виды и функциональные классы, периферийные устройства.
Периферийное устройство (ПУ) - устройство, входящее в состав внешнего оборудования микро-ЭВМ, обеспечивающее ввод/вывод данных, организацию промежуточного и длительного хранения данных.
Можно выделить следующие основные функциональные классы периферийных устройств:
ПУ, предназначенные для связи с пользователем. К ним относят различные устройства ввода (клавиатуры, сканеры, а также манипуляторы - мыши, трекболы и джойстики), устройства вывода (мониторы, индикаторы, принтеры, графопостроители и т.п.) и интерактивные устройства (терминалы, ЖК-планшеты с сенсорным вводом и др.)
Устройства массовой памяти (винчестеры1), дисководы2), стримеры3) накопители на оптических дисках, флэш-память4) и др.)
Устройства связи с объектом управления (АЦП, ЦАП, датчики, цифровые регуляторы, реле и т.д.)
Средства передачи данных на большие расстояния (средства телекоммуникации) (модемы, сетевые адаптеры).
46.Устройства ввода информации
Клава, мыш, геймпады, тачпады, симуляторы руля… такая фигня
Устройства ввода — периферийное оборудование для занесения (ввода) данных или сигналов в компьютер либо другое электронное устройство во время его работы. Устройства ввода и выводы составляют аппаратный интерфейс между компьютером и сканером или 6DOF контроллером.
Устройства вывода информации
Устройства вывода — периферийные устройства, преобразующие результаты обработки цифровых машинных кодов в форму, удобную для восприятия человеком или пригодную для воздействия на исполнительные органы объекта управления.
47.Устройства вывода
Монитор
Монитор (дисплей) - устройство визуализации текстовой или графической информации без ее долговременной фиксации. По типу отображаемой информации мониторы делят на алфавитно-цифровые (в настоящее время не используются) и графические.
Принтеры
Под принтером обычно подразумевают устройство вывода данных, преобразующее информацию в удобную для чтения форму на бумаге. И т.д.
48.Мониторы ЭЛТ, назначение, устройство.
Монитор — конструктивно законченное устройство, предназначенное для визуального отображения информации.
Устройство прибора:
Основным элементом монитора является кинескоп, называемый также электронно-лучевой трубкой. Кинескоп представляет собой герметичную стеклянную трубку из которой удален воздух (вакуум). Один из концов трубки узкий и длинный - это горловина, в которой находится электронная пушка. Другой - широкий и достаточно плоский - это экран. С фронтальной стороны внутренняя часть стекла трубки покрыта люминофором (luminophor). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и т.п. Люминофор - это вещество, которое испускает свет при бомбардировке его заряженными частицами (электронами). Между электронной пушкой и экраном находится управляющая система (электромагниты).
49.Мониторы ЖК, назначение, устройство.
ЖК монитор – это монитор с плоским жидкокристаллическим дисплеем. Существует специальный TFT усилитель, который способен повышать быстродействие, контрастность и четкость изображения.
Предназначен жидкокристаллический монитор для того, чтобы отображать графическую информацию с компьютера, цифрового фотоаппарата, телевизора, калькулятора, электронного переводчика и прочего. Благодаря специальной системе развертки формируется изображение из отдельных элементов. Простые приборы имеют от двух до пяти цветов. В более сложных, например, в компьютерных мониторах, изображение формируется с помощью RGB триад. На сегодняшний день используются матрицы с 18-ти битным цветом, а также существуют с 24-х битным. Но и это не предел.
Рассмотрим, как устроен жидкокристаллический монитор. Каждый пиксел – это слой молекул, находящийся между прозрачными электродами, и два поляризационные фильтра, плоскость поляризации которых, перпендикулярна. Если жидкие кристаллы отсутствуют, то свет, который пропускает первый фильтр, полностью блокируется вторым. Поверхность электродов обработана для того, чтобы ориентировать молекулы в одном направлении. Получающаяся структура способна пропускать свет практически без потерь, что позволяет считать каждую ячейку прозрачной.
В случае, когда электроды находятся под действием напряжения, молекулы выстраиваются в направлении поля, тем самым искажая свою винтовую структуру. Когда же напряжение отключается, то молекулы возвращаются в первоначальное положение. Если величина поля достаточно большая, то все молекулы становятся параллельными, это приводит к непрозрачности ячейки. Таким образом варьируя напряжение, можно менять яркость и цветность каждой ячейки.
В целом жидкокристаллический монитор состоит из таких составляющих, как электроника, обрабатывающая входной видеосигнал, ЖК матрица, модуль подсветки, блок питания и корпус. Именно они определяют все характеристики каждого монитора, хотя одни из них могут быть важнее других.
50.Сравнение мониторов ЭЛТ и ЖК.
Выбирая тип монитора следует отдать предпочтение ЖК-монитору перед ЭЛТ-монитором.
Дата добавления: 2015-01-30; просмотров: 94 | Поможем написать вашу работу | Нарушение авторских прав |