Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Гидратирование и затвердевание магнезиальных вяжущих.

По сравнению с CaO, оксид магния имеет большую инертность при взаимодействии с водой. Данный фактор поясняется тем, что пленка образованного Mg(OH)2 служит препятствием для проникновения воды внутрь зерен. Гидратация MgO имеет уровень тепла 38-42 кДж/кг, что зависит от условий гидратирования. Определено, что Mg(OH)2 может обладать двумя формами, одна из которых стабильная.

33.

Гипсовый камень — продукт измельчения горной породы осадочного (химического) происхождения, состоящей в основном из природного минерала — гипса (CaS042H20). Теоретический состав двуводного сульфата кальция, % по массе: СаО — 32,56; S03 — 46,51; Н20 - 20,93.

В природе гипс встречается чаще всего в виде трех минералогических разновидностей, отличающихся друг от друга своей кристаллической структурой:

• алебастр (гр. alabastros — белый) — плотный мелкозернистый минерал с сахаровидным изломом или крупнозернистый с беспорядочно ориентированными в пространстве кристаллами;

• селенит (гр. selen — луна) — волокнистый, сложенный из правильно расположенных нитевидных кристаллов минерал, имеющий характерный шелковистый отлив;

• гипсовый шпат — пластинчатый минерал с плоскими прозрачными кристаллами слоистой структуры.

Цвет: зависит от чистоты гипсового сырья содержащий примеси.

Плотность: значение истиной насыщенной в уплотненном и рыхлом состоянии

Удельная поверхность.

Тонкость помола: степень измельчения гипсового вяжущего

Водопотребность: минимальное количество воды необходимое для получения теста

Сроки схватывания:

Старение гипсовых вяжущих.

Водостойкость по коэффициенту размягчения.

Огнестойкость.

34. Высокообжиговые гипсовые вяжущие обладают пониженной химической активностью, медленным схватыванием, повышенной водостойкостью, прочностью до 20 МПа. Для ускорения процесса твердения в ангидритовый цемент, полученный при температуре 600 – 700 0С, вводят добавку извести. При температуре 900 – 1000 0С безводный сульфат кальция частично разлагается на оксид кальция (СаО) и серный газ (SО3). Следовательно, выпускаемый эстрихгипс представляет собой двухкомпонентный продукт, состоящий из СаSО4 + СаО. Основное назначение этих вяжущих – выполнение монолитных полов или в сочетании с плитами из горных пород – мозаичных полов; изготовление путем введения пигментов полированных плит искусственного мрамора, применяемых для отделки пола и стен в зда- ниях общественного назначения; получение штукатурных, кладочных растворов и легких бетонов.

К высокообжиговым гипсовым вяжущим относят ангидритовое вяжущее и высокообжиговый гипс (эстрих-гипс). Технологическая схема их производства достаточно проста. Сырьем может служить как природный двуводный гипс, так и ангидрит. Отличие в технологии ангидритового вяжущего и эстрих-гипса состоит в температуре обжига: ангидритовое вяжущее получают при температурах 600—750°С, а высокопрочный гипс — при температурах 800-1000°С.
Кроме того, ангидритовое вяжущее измельчают вместе с добавками-катализаторами, а эстрих-гипс во введении таких добавок не нуждается. Эти два отличия связаны между собой. Ангидритовое вяжущее состоит в основном из нерастворимого ангидрита — безводного CaS04, который сам по себе даже в тонкоизмельченном виде в реакцию с водой не вступает и, следовательно, не твердеет («мертвообожженный» гипс). Его «оживляют» введением катализаторов, которые увеличивают растворимость безводного CaS04 и создают условия для его гидратации и кристаллизации из раствора двуводного гипса. Такими катализаторами являются известь, различные сульфаты, обожженный доломит, основный гранулированный шлак и др. Наиболее распространенный катализатор — известь. Эти добавки вводят в ангидритовое вяжущее при помоле в количестве 1—8%.
При температуре тепловой обработки высокообжигового гипса (800.-1000″С) происходит частичное разложение сульфата кальция с образованием некоторого количества извести (СяОЗ—5%), которая и играет роль катализатора.

Высокообжиговые (ангидритовые) вяжущие получают обжигом двуводного гипса при более высокой температуре до 700... 1000°С с полной потерей химически связанной воды и образованием безводного сульфата кальция — ангидрита CaSO4. К низкообжиговым относится строительный, формовочный и высокопрочный гипс, а к высокообжиговым — ангидритовый цемент и эстрих-гипс.

35. Низкообжиговые гипсовые вяжущие вещества получают при нагревании двухводного гипса CaSO4•2H2O до температуры 150...160°С с частичной дегидратацией двуводного гипса и переводом его в полуводный гипс CaSO4•0,5H2O.

Низкообжиговые гипсовые вяжущие вещества, состоящие из полуводного гипса (далее: гипсовые вяжущие), производят в соответствии с требованиями ГОСТ 125 по технологическим регламентам, утвержденным в установленном порядке.

Используемый для производства гипсовых вяжущих гипсовый камень должен удовлетворять требованиям ГОСТ 4013, а фосфо-гипс — действующей нормативно-технической документации. В зависимости от содержания CaS04-2H,0, % по массе, гипсовый камень подразделяют на 4 сорта: I > 95; II > 90; III > 80; IV > 70.

Низкотемпературная обработка двуводного сульфата кальция обеспечивает его частичную дегидратацию (выделение 15,76 % химически связанной воды) по схеме

CaSO,. 2Н,0- CaSO,. 0,5Н,0 + 1,5Н,0

В зависимости от технологии получения полуводный гипс может образовываться в двух модификациях — а и р.

Полуводный гипс Р-модификации получают при частичной дегидратации сырья при температуре 140... 160 °С в открытых аппаратах, сообщающихся с атмосферой (варочных котлах, сушильных барабанах, шахтных печах и др.). В таких условиях вода выделяется из гипса в виде водяных паров, и образуются плохо окристаллизован-ные, мелкие, пластинчатые или волокнистые кристаллы P-CaS04-0,5H20. Гипсовое вяжущее, состоящее преимущественно из Р-модификации полуводного гипса, характеризуется высокой водо-потребноетью для получения теста стандартной консистенции, невысокой прочностью и имеет тенденцию к ползучести. В строительной практике это вяжущее часто называют алебастром, или строительным гипсом.

Полуводный гипс а-модификации получают в результате обработки двуводного сульфата кальция в герметичных аппаратах (автоклавах) при температуре 120... 140 °С и давлении насыщенного водяного пара 0,13...0,3 МПа или кипячения этого же сырья в растворах некоторых солей (хлоридов, сульфатов, нитратов) при температуре 100...110 °С и атмосферном давлении. При этом вода выделяется из гипса в капельно-жидком состоянии и образуются крупные, плотные, игольчатые или призматические кристаллы a-CaS040,5H20. Гипсовое вяжущее, состоящее преимущественно из а-модификации полуводного гипса, медленнее гидратируется, характеризуется меньшей водопотребностью, а затвердевший гипсовый камень — более высокой прочностью (высокопрочный гипс).

36. Теплоизоляционные материалы в зависимости от назначения подразделяют на изоляционно-строительные, которые применяют для утепления строительных ограждений, и изоляционно-монтажные —для утепления трубопроводов и промышленного оборудования. Деление это условно, так как некоторые материалы используют как для изоляции строительных конструкций, так для изоляции промышленных объектов.

Теплоизоляционные материалы (ГОСТ 16381-77*) классифицируют по следующим признакам:

1. Форме и внешнему виду:

• штучные (плиты, блоки, кирпичи, цилиндры, полуцилиндры,

сегменты);

" • рулонные и шнуровые (маты, шнуры, жгуты);

• рыхлые и сыпучие (вата, перлитовый песок и др.).

2. Структуре:

• волокнистые (минераловатные, стекловолокнистые и др.);

• зернистые (перлитовые, вермикулитовые);

• ячеистые (изделия из ячеистых бетонов, пеностекло, пенопласты, совелитовые и др.).

3. Виду исходного сырья:

• неорганические;

• органические;

• композиционные.

4. Средней плотности:

• на группы и марки; материалы, которые имеют промежуточные значения плотности, не совпадающие с указанными выше, относятся к ближайшей большей марке.

5. Жесткости:

• мягкие (М) — сжимаемость свыше 30 % при удельной нагрузке 0,002 МПа (минеральная и стеклянная вата, вата из каолинового и базальтового волокна, вата из супертонкого стекловолокна, маты и плиты из штапельного стекловолокна);

 

 

• полужесткие (П) — сжимаемость от 6 до 30 % при удельной нагрузке 0,002 МПа (плиты минераловатные и из штапельного стекловолокна на синтетическом связующем);

• жесткие (Ж) — сжимаемость до 6 % при удельной нагрузке 0,002 МПа (плиты из минеральной ваты на синтетическом или битумном связующем);

• повышенной жесткости (ПЖ) — сжимаемость до 10 % при удельной нагрузке 0,04 МПа (плиты минераловатные повышенной жесткости на синтетическом связующем);

• твердые (Т) — сжимаемость до 10 % при удельной нагрузке 0,1 МПа.

6. Теплопроводности:

• класс А — низкой теплопроводности — теплопроводность при средней температуре 298 К (25 °С) до 0,06 Вт/(м • К);

• класс Б — средней теплопроводности—теплопроводность при средней температуре 298 К от 0,06 до 0,115 Вт/(м • К);

• класс В — повышенной теплопроводности — теплопроводность отО,115доО,175Вт/(м-К);

7. Горючести (СНиП 21-01-97):

• негорючие (НГ);

• слабогорючие (П);

• умеренногорючие (Г2);

• нормальногорючие (ГЗ);

• сильногорючие (Г4).

37. Теплоизоляционные материалы. Поризация материалов

Среди главных искусственных способов поризации материалов с приданием им теплозащитных свойств выделяют следующие: способ газообразования, пенообразования, повышенного водозатворения, вспучивания и распушения.

Способ газообразования основан на введении в сырьевую смесь компонентов, которые способны вызвать химические реакции с выделением в больших количествах газовой фазы. Газы, стремясь выйти из твердеющей пластической массы, образуют пористую структуру материала — газокерамики, газобетона, газосиликата, ячеистого стекла, газонаполненной пластмассы.

В качестве химических газообразователей используются алюминиевая пудра и техническая перекись водорода (пергидроль). Алюминиевая пудра в результате реакции с гидроксидом кальция способствует выделению большого количества молекулярного водорода. Пергидроль легко разлагается в щелочной среде с образованием молекулярного кислорода. В обоих случаях вспучивается цементное тесто. Аналогичным путем в расплавленные стекла и смолы вводятся реагенты, способствующие образованию газов.

Способ пенообразования основывается на введении в воду затворения вяжущих пенообразующих веществ. Стабилизированные пузырьки пены представляют собой воздушные поры пенобетона, пеносиликата и пенокерамики. В качестве стабилизаторов пены с повышением их стойкости до момента отвердевания вяжущего используются столярный клей, сернокислый глинозем, смолы и др.

Пенообразователями служат соли жирных кислот - натриевые и калиевые мыла; мыльный корень и извлекаемый из него сапонин; клееканифольный пенообразователь, получаемый из канифольного мыла (соль абиетиновой кислоты); алюмосульфонафтеновый пенообразователь, получаемый из керосинового контакта и сернокислого глинозема.

Способ повышенного водозатворения применяется большое кол-во воды при приготовлении формовочных масс (ДВП).

Способ вспучивания заключается в высоком нагревании горных пород и шлаков. Из сырья выделяются газы ил водяные пары. Это перлит, обсидин, вермикулит.

Способ распушения заключается в изготовлении из плотного минерального сырья волокнистого материала в виде бесформенной массы. Получают органически ТИМы – хлопковая шерстяная вата, ватин, войлок, древесное волокно.




Дата добавления: 2015-01-30; просмотров: 149 | Поможем написать вашу работу | Нарушение авторских прав

1 | 2 | 3 | 4 | <== 5 ==> | 6 | 7 |


lektsii.net - Лекции.Нет - 2014-2025 год. (0.014 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав