Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Метод резолюций в логике высказываний.

Читайте также:
  1. D Метод getHelpMenu: public Menu getHelpMenu () .В данной реализации
  2. D Метод isSelectionEmpty: public boolean isSelectionEmpty().Возвра­щает True,если на момент вызова метода ни один элемент дерева не вы­делен пользователем или программно.
  3. I. Организационно - методический раздел
  4. I.Организационно-методический раздел
  5. II. Рыночные методы установления цены на товар
  6. III. Учебно-методическое обеспечение дисциплины
  7. IV. ФОРМЫ И МЕТОДЫ КОНТРОЛЯ, СИСТЕМА ОЦЕНОК
  8. IV. Эконометрические методы определения цен
  9. IX. Учебно-методическое обеспечение курса.
  10. Mix-методики маркетинговых исследований

Метод резолюций

Существует эффективный алгоритм логического вывода - алгоритм резолюции. Этот алгоритм основан на том, что выводимость формулы В из множества посылок F1; F2; F3;... Fn равносильна доказательству теоремы

|¾(F1&F2&F3&...&Fn®B),

формулу которой можно преобразовать так:

|¾(F1&F2&F3&...&Fn®B) =

|¾(ù(F1&F2&F3&...&Fn)ÚB) =

|¾ù(F1&F2&F3&...&Fn&(F2ù B)).

Следовательно, заключение В истинно тогда и только тогда, когда формула (F1&F2&F3&...&Fn&(ùB))=л. Это возможно при значении “л” хотя бы одной из подформул Fi илиùB.

Для анализа этой формулы все подформулы Fi иùB должны быть приведены в конъюнктивную нормальную форму и сформировано множество дизъюнктов, на которые распадаются все подформулы. Два дизъюнкта этого множества, содержащие пропозициональные переменные с противоположными знаками (контрарные атомы) формируют третий дизъюнкт - резольвенту, в которой будут исключены контрарные пропозициональные переменные. Неоднократно применяя это правило к множеству дизъюнктов и резольвент, стремятся получить пустой дизъюнкт. Наличие пустого дизъюнкта свидетельствует о выполнении условия F1&F2&F3&...&Fn&ùB=л.

 

Алгоритм вывода по принципу резолюции

Шаг 1. принять отрицание заключения, т.е. ù В;

Шаг 2. привести все формулы посылок и отрицания заключения к конъюнктивной нормальной форме (см. с.35);

Шаг 3. выписать множество дизъюнктов всех посылок и отрицания заключения:

K = {D1; D2;... Dk };

Шаг 4. выполнить анализ пар множества K по правилу:

“если существуют дизъюнкты Di и Dj, один из которых (Di) содержит литеру А, а другой (Dj) - контрарную литеру ùА, то соединить эту пару логической связкой дизъюнкции (Di Ú Dj) и сформировать новый дизъюнкт - резольвенту, исключив контрарные литеры А и ùА;

Шаг5. если в результате соединения дизъюнктов, содержащих контрарные литеры, будет получена пустая резольвента - , то конец (доказательство подтвердило противоречие), в противном случае включить резольвенту в множество дизъюнктов K и перейти к шагу 4.

Пример: Работа автоматического устройства, имеющего три клапана А, В и С, удовлетворяет следующим условиям: если не срабатывают клапаны А или В или оба вместе, то срабатывает клапан С; если срабатывают клапаны А или В или оба вместе, то не срабатывает клапан С. Следовательно, если срабатывает клапан С, то не срабатывает клапан А [2].

 

((ùАÚùBÚùА &ùB)®С); ((AÚBÚА&B)®ùC)

(C®ùA).

 

1) F1=((ùАÚùBÚùА &ùB)®С)= (АÚC)&(BÚC) - посылка;

2) F2=((AÚBÚА&B)®ùC)= (ùАÚùC)&(ùBÚùC) -посылка;

3) F3=ù (C®ùA)=C&А –отрицание заключения;

1) множество дизъюнктов: K={(АÚC); (BÚC); (ùАÚùC); (ùBÚùC); C; А };

2) СÚ(ùАÚùC)=ùА – резольвента из 2) и 3);

3) K1={(АÚC); (BÚC); (ùАÚùC); (ùBÚùC); C; А; ùА };

4) ùАÚ(АÚC)=C – резольвента из 1) и 5);

5) K2={(АÚC); (BÚC); (ùАÚùC); (ùBÚùC); C; А; ùА };

6) СÚ(ùBÚùC)=ùB –резольвента из 2) и 5);

10) K3={(АÚC); (BÚC); (ùАÚùC); (ùBÚùC); C; А; ùА; ùB };

11) ùBÚ(BÚC)=C – резольвента из 1) и 9);

12) CÚùA=(CÚùA) – резольвента из 5) и 11);

13) K4={(АÚC); (BÚC); (ùАÚùC); (ùBÚùC); C; А; ùА; ùB; (CÚùA)};

14) (CÚùA)Ú (ùАÚùC)=ùА – резольвента из 2) и 12);

15) K5={(АÚC); (BÚC); (ùАÚùC); (ùBÚùC); C; А; ùА; ùB; (CÚùA)};

16) ùАÚA= - пустая резольвента.

Так доказано, что если срабатывает клапан С, то не срабатывает клапан А.

Пример: Доказать истинность заключения

A; В; (С&A®ùB)

ùС.

1) A - посылка;

2) B - посылка;

3) C&A®ù B = (ùCÚùAÚùB) - посылка;

4) ù(ùC) = C - отрицание заключения;

5) множество дизъюнктов: K={A; B; (ùCÚùAÚùB); C};

6) AÚ(ùCÚùAÚùB)=(ùСÚùB) - резольвента из 1) и 3);

7) K1={A; B; (ùCÚùAÚùB); C; (ùСÚùB)};

8) BÚ(ùСÚùB)=ùC - резольвента из 2) и 6);

9) K2={A; B; (ùCÚùAÚùB); C; (ùСÚùB); ùC };

10) СÚùC = - пустая резольвента из 4) и 7).

Так доказана истинность заключения ù C по принципу резолюции.

Пример: Доказать истинность заключения

(A&B®С); (C&D® ù M);(ù N® D&M)

A&B®N.

1) A&B®C=ù(A&B)ÚC=(ùAÚùBÚC) - посылка;

2) C&D®ùM=ù(C&D)ÚùM=(ùCÚùDÚùM) - посылка;

3)ùN®D&M=ù(ùN)ÚD&M=(N Ú D)&(N Ú M) - посылка;

4) ù((A&B)®N)=A&B&ùN - отрицание заключения;

5) множество дизъюнкций:

K={(ùAÚùBÚC); (ùCÚùDÚùM); (NÚD); (NÚM); A; B;ùN};

6) (MÚN)ÚùN=М - резольвента из 3) и 4);

7) K1={(ùAÚùBÚC); (ùCÚùDÚùM); (NÚD); (NÚM); A; B; M; ùN};

8) (DÚN)ÚùN=D - резольвента из 3) и 4);

9) K2={(ùAÚùBÚC); (ùCÚùDÚùM); (NÚD); (NÚM);A; B; M;ùN; D};

10) (ùAÚùBÚC)ÚB=(ùAÚC) – резольвента из 1) и 4);

11) K3={(ùAÚùBÚC); (ùCÚùDÚùM); (NÚD); (NÚM);A; B; M; ùN; D; (ùAÚC)};

12) (ùAÚC)ÚA=C - резольвента из 4) и 10);

13) K4={(ùAÚùBÚC); (ùCÚùDÚùM); (NÚD); (NÚM);A; B; M; ùN; D; (ùAÚC); C};

14) (ùCÚùDÚùM)ÚC =(ùDÚùM) - резольвента из 2) и 12);

15) K5={(ùAÚùBÚC); (ùCÚùDÚùM); (NÚD); (NÚM);A; B; M; ùN; D; (ùAÚC); C; (ùDÚùM)};

16) DÚ(ùDÚùM)=ùM - резольвента из 8) и 15;

17) K6={(ùAÚùBÚC); (ùCÚùDÚùM); (NÚD); (NÚM);A; B; M; ùN; D; (ùAÚC); C; (ùDÚùM); ùM};

12) МÚù M = - пустая резольвента.

Так доказана истинность заключения (A&B®N).

Пример: Доказать истинность заключения

(A®B)&(C®D); (D&B®M);ù M

(ùAÚùC)

1) (A®B)&(C®D)=(ùAÚB)&(ùCÚD) - посылка;

2) D&B®M=ù(D&B)ÚM=(ùDÚùBÚM) - посылка;

3) ù M - посылка;

4) (ù AÚ ù C) = A & C - отрицание заключения;

5) K ={A; C; ùM; (ùAÚB); (ùCÚD); (ùDÚùBÚM)}

6) AÚ(ùAÚB)=B - резольвента;

7) BÚ(ùDÚùBÚM)=(ùDÚM) - резольвента;

8) (ùDÚM)Ú(ùCÚD)=(ùCÚM) - резольвента;

9) (ùCÚM)ÚùM=ùC - резольвента;

10)ùCÚC= ÿ - пустая резольвента.

Так доказана истинность заключения (ùAÚùC).

Пример: Доказать истинность заключения

((AÚB)®C); (С®(DÚB)); (С®N); ((ùD)&(ù N))

ù A.

1) ((AÚB)®C)=(ùAÚC)&(ùBÚC) - посылка;

2) (C®(DÚB))=(BÚùCÚD) - посылка;

3) (C®N) = (ùCÚN) - посылка;

4)ùD - посылка;

5) ùN - посылка;

6) ù(ùA)=A – отрицание заключения;

7) K={(ùAÚC); (ùBÚC); (BÚùCÚD); (ùCÚN);ùD;ùN; A};

8 ) AÚ(ùAÚC)=C – резольвента из 1) и 6);

9) CÚ(BÚùCÚD)=(BÚD) – резольвента из 2) и 7);

10) (BÚD)Ú(ùBÚC)=(CÚD) – резольвента из 1) и 8);

11) (CÚD)ÚùD=C – резольвента из 4) и 9);

12) CÚ(ùCÚN)=N – резольвента из 3) и 10);

13) NÚùN=ÿ - пустая резольвента.

Так как резольвенты включаются в множество дизъюнктов S, то возможно неоднократное их использование в процессе вывода. Многократное использование дизъюнкт множества S оправдано законом идемпотентности, т.к. Di=Di&Di&...&Di.

Пример: Доказать истинность заключения

(AÚB); (A«B);

(A&B).

1) (AÚB) - посылка;

2) (A«B)=(ùAÚB)&(ùBÚA) - посылка;

3)ù(A&B)=(ùAÚùB) –отрицание заключения;

4) K = {(AÚB); (ùAÚB); (ùBÚA); (ùAÚùB)};

5) (ùAÚùB)Ú(ùAÚB)= ùA - резольвента;

6) ùAÚ(AÚB)=B - резольвента;

7) BÚ(ùBÚA)=A - резольвента;

8) AÚùA= ÿ - пустая резольвента.

 




Дата добавления: 2015-09-10; просмотров: 159 | Поможем написать вашу работу | Нарушение авторских прав

<== предыдущая лекция | следующая лекция ==>
Реалізація спадкових прав у країнах континентальної та англо-американської правових систем| Предваренная нормальная форма. Сколемовская стандартная форма.

lektsii.net - Лекции.Нет - 2014-2025 год. (0.013 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав