Читайте также:
|
|
При решении инженерных задач, которые описываются с помощью мат. модели,состоящая из дифференциального уравнения и краевых условий, т.е.
(1)
{ (2)
Наряду с аналитическими и численными методами используются элементы вариационного исчисления. А именно мат. модели (1) – (2) ставится в соответствии некий функционал, минимум которого может быть решением краевой задачи (1) – (2). Поэтому ниже рассмотрим некоторые основные понятия элементов вариационного исчисления.
Первой задачей вариационного исчисления была задача о брахистохроне, сформулированный Бернулли в 1696 г. в этой задаче необходимо было найти кривую у(х), таким образом, чтобы минимизировать время спуска по этой кривой из одной точки в другую.
Бернулли показал, что время спуска записывается в виде:
(3)
Выражение 3 показывает, что Т=Т[e], т.е. может быть функцией от у, и называется функционалом, т.е. его переменная является функцией.
В общем виде выражении 3 записывают так:
(4)
Итак сформулируем главную цель вариационного исчисления.
Найти функцию у. которая доставляла бы max(min) функционала (4), в соответствии с этим стратегия поиска экстремума функционала (4) будет такой же как и нахождение экстремума функций в мат. анализе, т.е. сначала находим критические точки из условия у'(х)=0 и далее определяем max или min. В вариационном же исчислении подход остаётся прежним, но аргументом здесь может быть не числовая переменная, а функции. В вариационном исчислении мы вычисляем так называемую функциональную производную, т.е. производную по функции у=у(х) и далее приравниваем её к нулю и место критических точек из курса мат. анализа мы получаем обыкновенное дифференциальное уравнение (ОДУ) известное как уравнение Эйлера-Лагранжа решая которое, при соответствующих краевых условиях мы получаем функцию (решение) которое даёт минимум исходному функционалу вариационного исчисления, таким образом задача нахождения минимума функционала сводится к нахождению решения краевой задачи для ОДУ.
Дата добавления: 2015-09-10; просмотров: 68 | Поможем написать вашу работу | Нарушение авторских прав |
<== предыдущая лекция | | | следующая лекция ==> |
медиана | | | На русском языке |