Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Теоремы и тождества алгебры логики

Читайте также:
  1. I. Решение логических задач средствами алгебры логики
  2. V2: Предельные теоремы теории вероятностей
  3. алгебра логики.ОСНОВНЫЕ ЛОГИЧЕСКИЕ ОПЕРАЦИИ И ИХ РЕАЛИЗАЦИЯ
  4. Билет 5. Роль логики в формировании логической культуры человека
  5. В чём состоит значение логики?
  6. ВЕРОЯТНОСТЬ СЛОЖНЫХ СОБЫТИЙ. ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ. УСЛОВНАЯ ВЕРОЯТНОСТЬ
  7. ВЗАИМОСВЯЗЬ ЛОГИКИ И ЯЗЫКА
  8. Возникновение логики. Основные характеристики аристотелевской логики.
  9. Вопрос 2. ОБЪЕКТ, ПРЕДМЕТ И МЕТОДЫ ЛОГИКИ
  10. Вопрос 6.Зависимые и независимые события. Условная вероятность. Теоремы умножения вероятностей.

С помощью аксиом алгебры логики можно доказать целый ряд теорем и тождеств. Одним из эффективных методов доказательства теорем является метод перебора всех значений переменных: если теорема истинна, то с учетом (2)…(5) уравнение, формулирующее утверждение теоремы, должно быть истинно при подстановке любых значений переменных в обе его части.

Метод перебора не слишком трудоемок, так как переменные могут иметь только два значения: 0 и 1.

Так, методом перебора легко убедиться в справедливости следующих теорем:

Идемпотентные законы (законы тождества):

(6)

Коммутативные законы (переместительные):

(7)

Ассоциативные законы (сочетательные):

(8)

 

Дистрибутивные законы:

(9)

Законы отрицания:

(10)

(11)

(12)

Законы двойственности (Теоремы де Моргана):

(13)

Закон двойного отрицания:

(14)

 

Законы поглощения (абсорбция):

(15)

Операции склеивания:

(16)

Операции обобщенного склеивания:

(17)

(18)

Теоремы (6)…(13) и (15)…(18) записаны парами, причем каждая из теорем пары двойственна другой, так как из одной теоремы пары можно получить другую на основании принципа двойственности, то есть путем взаимной замены операций дизъюнкции и конъюнкции, а также элементов 0 и 1, если они имеются. Теорема (14) самодвойственна, так как она не изменяется по принципу двойственности (отсутствуют элементы 0 и 1 и операции дизъюнкции и конъюнкции). Все теоремы могут быть доказаны аналитически или методом перебора. В качестве примера приведем доказательство тождества (13) методом перебора (табл. 1).

 

Таблица 1

x y
   
   
   
   

Если в логическое выражение входят операции дизъюнкции и конъюнкции, то следует соблюдать порядок выполнения операций: сначала выполняется операция конъюнкции, а затем — операция дизъюнкции. Этим устанавливается иерархия операций: конъюнкция — старшая операция, дизъюнкция — младшая.

В сложных логических выражениях для задания порядка выполнения операций используются скобки. Для упрощения записи выражений принято опускать те скобки, которые являются только подтверждением иерархии операций, например:

.

Но скобки нельзя опустить в выражении , поскольку

.

Некоторые теоремы и тождества алгебры логики имеют особое значение, так как позволяют упрощать логические выражения. Например, в соотношениях (6), (10)…(12) и (15)…(18) правая часть проще левой, поэтому, произведя в логических выражениях соответствующие преобразования, можно добиться существенного их упрощения. С этой целью особенно часто используются тождества (15)…(18).

Перечисленные формулы приводятся без доказательств, но убедиться в их справедливости можно, подставив в правые и левые части равенств значения переменных 0 и 1. Эти формулы не исчерпывают возможных булевых равенств, но они являются основными при преобразовании булевых функций.

Операции дизъюнкции, конъюнкции и отрицания легко реализовать довольно простыми контактами (релейными) цепями и электронными схемами с односторонней проводимостью, имеющими конечное число входов и один выход. Простейшие электронные схемы, реализующие элементарные булевы функции (НЕ, И, ИЛИ, ИЛИ-НЕ, И-НЕ), называются логическими элементами (ЛЭ).




Дата добавления: 2015-01-07; просмотров: 102 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.008 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав