Читайте также:
|
|
В последние несколько лет основное сражение за увеличение производительности компьютеров велось в области разработки и производства новых микросхем для скоростной памяти. Причем если до этого все совершенствование оперативной памяти сводилось к увеличению ее объема, то сейчас во главу угла ставится ускорение процесса чтения/записи запоминающих ячеек и передачи данных по системной шине. Таким образом, разработчики наконец-то вынужденно пришли к выводу, что наращивать частоту ядра процессора без ускорения процесса работы с оперативной памятью бессмысленно, т. к. процессор, обработав полученную перед этим порцию данных, надолго, останавливается, ожидая окончания очередного цикла чтения/записи. Совершенствование микросхем памяти, естественно, влечет за собой изменение конструкции чипсета системной платы и правил работы системной шины. В итоге перед пользователями теперь встает не только проблема выбора нового процессора и системной платы, но и подбора оптимального варианта системы "процессор-плата-память". Ведь сегодня предлагаются три типа модулей (DDR, DDR2, DDR3) для работы с современными процессорами, причем выбор между модулями DDR2 и DDR3 не так очевиден. Кроме того, для управления определенным типом памяти необходимо, чтобы чипсет системной платы или блок управления памятью процессора умел работать с ней. До появления процессоров Pentium III у пользователей особого выбора модулей памяти не было, а основная проблема на практике заключалась в том, как различить модули SIMM (Single In-line Memory Module) с микросхемами EDO (Extended Data Output) и FPM (Fast Page Mode). Новые поколения процессоров стимулировали разработку более скоростной памяти SDRAM (Synchronous Dynamic Random Access Memory) с тактовой частотой 66 МГц, а модули памяти с такими микросхемами получили название DIMM (Dual In-line Memory Module). В настоящее время практически завершился процесс отказа от использования модулей памяти DDR в пользу DDR2, а также начат переход на следующее поколение модулей памяти DDR3. Для процессоров Intel этот переход на DDR2 и 3 практически состоялся, а для процессоров AMD начался после выхода сокетов АМ2 и 3. Относительно памяти DDR3 следует отметить, что серийный выпуск модулей начат лишь в 2007 г., поэтому эта память до сих пор дорога, да и, в большинстве случаев, еще просто не нужна, т. к. большинству систем вполне хватает и памяти DDR2. Вообще, это еще вопрос, насколько необходима новейшая память, поскольку в реальной жизни и для большинства приложений результаты практической работы не совпадают с излишне оптимистическими замерами в различных тестах. Кроме перечисленных типов памяти существуют и другие типы памяти и модулей, которые используются в специализированных устройствах, например, в качестве видеопамяти. Следует отметить, что постоянно приходят сообщения о разработке микросхем памяти на новых принципах, 'поэтому, возможно, уже через год-два микросхемы DDR SDRAM будут считаться морально устаревшими.
64-разрядные модули памяти DIMM (Dual In-line Memory Module) появились в 1997 г. У этого поколения модулей памяти насчитывается 168 контактов, расположенных с двух сторон текстолитовой платы (по 84 контакта с каждой стороны).
Кэш-память
Кэш или сверхоперативная память — очень быстрое ЗУ небольшого объёма, которое используется при обмене данными между микропроцессором и оперативной памятью для компенсации разницы в скорости обработки информации процессором и несколько менее быстродействующей оперативной памятью.
Основное назначение кэш памяти – служить местом временного хранения обрабатываемых в текущий момент времени кодов программ и данных. При обращении процессора к памяти сначала производится поиск нужных данных в кэш-памяти, и только тогда, когда там отсутствуют нужные данные, происходит обращение к оперативной памяти. Поскольку время доступа к кэш-памяти в несколько раз меньше, чем к обычной памяти, среднее время доступа к памяти уменьшается. Кэш – память располагается как бы «между» процессором и ОП.
Кэш-памятью управляет специальное устройство — контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их в кэш-память. При этом возможны как " попадания ", так и " промахи ". В случае попадания, то есть, если в кэш подкачаны нужные данные, извлечение их из памяти происходит без задержки. Если же требуемая информация в кэше отсутствует, то процессор считывает её непосредственно из оперативной памяти. Соотношение числа попаданий и промахов определяет эффективность кэширования.
Кэш-память реализуется на микросхемах статической памяти SRAM (Static RAM), более быстродействующих, дорогих и малоёмких, чем DRAM.
Различают кэш-память первого уровня (выполняется на одном кристалле с процессором и имеет объем порядка несколько десятков Кбайт), второго уровня (выполняется на отдельном кристалле, но в границах процессора, с объемом в сто и более Кбайт) и третьего уровня (выполняется на отдельных быстродействующих микросхемах и размещается на материнской плате и имеет объем один и более Мбайт).
Современные микропроцессоры имеют встроенную кэш-память, так называемый кэш первого уровня размером 8–16 Кбайт. Кроме того, на системной плате компьютера может быть установлен кэш второго уровня ёмкостью от 64 Кбайт до 256 Кбайт и выше.
Постоянная память ROM
Постоянная память (ПЗУ, англ. ROM, Read Only Memory — память только для чтения) — энергонезависимая память, используется для хранения данных, которые никогда не потребуют изменения. Содержание памяти специальным образом “ зашивается ” в устройстве при его изготовлении для постоянного хранения. Из ПЗУ можно только читать.
В ПЗУ хранятся:
программа управления работой процессора, программы управления дисплеем, клавиатурой, принтером, внешней памятью, программы запуска и остановки компьютера, тестирования устройств.
Важнейшая микросхема постоянной памяти — модуль BIOS.
BIOS (Basic Input/Output System — базовая система ввода-вывода) — совокупность программ, предназначенных для:
· автоматического тестирования устройств после включения питания компьютера;
Роль BIOS двоякая: с одной стороны это неотъемлемый элемент аппаратуры (Hardware), а с другой строны — важный модуль любой операционной системы (Software).
Энергонезависимая память CMOS (полупостоянная память)
CMOS RAM — это память с невысоким быстродействием и минимальным энергопотреблением от батарейки. Используется для хранения информации о конфигурации и составе оборудования компьютера, а также о режимах его работы.В ней постоянно хранится и обновляется информация о текущей дате и времени. Чтобы при отключении питания компьютера содержимое CMOS-памяти не стиралось, и часы продолжали отсчитывать время, микросхема CMOS-памяти питается от специальной маленькой батарейки или аккумулятора, которые находятся на системной плате.
Содержимое CMOS изменяется специальной программой Setup, находящейся в BIOS (англ. Set-up — устанавливать, читается "сетап").
Для хранения графической информации используется видеопамять.
Видеопамять (VRAM) — разновидность оперативного ЗУ, в котором хранятся закодированные изображения. Это ЗУ организовано так, что его содержимое доступно сразу двум устройствам — процессору и дисплею. Поэтому изображение на экране меняется одновременно с обновлением видеоданных в памяти.
6.4 Шины
Архитектура современных персональных компьютеров основана на магистрально-модульном принципе. Модульный принцип позволяет пользователю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация системы опирается на магистральный принцип обмена информацией. Все контроллеры устройств взаимодействуют с микропроцессором и оперативной памятью через системную магистраль передачи данных, называемую системной шиной.
Системная шина является основной интерфейсной системой компьютера, обеспечивающей сопряжение и связь всех его устройств между собой. Системная шина (системная магистраль) обеспечивает три направления передачи информации:
- между микропроцессором и основной памятью;
- между микропроцессором и портами ввода-вывода внешних устройств;
- между основной памятью и портами ввода-вывода внешних устройств.
Магистраль— это кабель, состоящий из множества проводов.
Данные, которые передаются по одной группе проводов (адресной шине) трактуются как адреса ячеек оперативной памяти или внешних устройств. Именно из этой шины процессор считывает адреса команд, которые необходимо выполнить, а также данные, с которыми оперируют команды. В современных процессорах адресная шина 32-разрядная, то есть она состоит из 32 параллельных проводников.
По другой группе проводов (шине данных) передаётся обрабатываемая информация из оперативной памяти в регистры процессора и наоборот. В ПК на базе процессоров Intel Pentium шина данных 64-разрядная. Это означает, что за один такт на обработку поступает сразу 8 байт данных.
Третья часть -командная шина (шина управления), по ней передаются сигналы управления (например, сигнал готовности устройства к работе, сигнал к началу работы устройства и др.).
Команды представлены в виде байтов. Простые команды вкладываются в один байт, но есть и такие команды, для которых нужно два, три и больше байта. Большинство современных процессоров имеют 32-разрядную командную шину, хотя существуют 64-разрядные и даже 128-разрядные процессоры с командной шиной.
Количество одновременно передаваемых по шине бит называется разрядностью шины. Всякая информация, передаваемая от процессора к другим устройствам по шине данных, сопровождается адресом, передаваемым по адресной шине (как письмо сопровождается адресом на конверте). Это может быть адрес ячейки в оперативной памяти или адрес (номер) периферийного устройства.
В состав ПК входит несколько шин: шина, связывающая процессор с блоками памяти; шина, к которой подключаются звуковая и сетевая карты; шина USB для подключения внешних устройств ввода-вывода (к ней можно последовательно подключить до 256 различных устройств) и другие.
6.5 Звуковая карта (аудиадаптер)
Звуковая плата(аудиоадаптер) это специальная электронная плата, которая позволяет записывать звук, воспроизводить его и создавать программными средствами с помощью микрофона, наушников, динамиков, встроенного синтезатора и другого оборудования.
Аудиоадаптер содержит в себе два преобразователя информации:
Профессиональные звуковые платы позволяют выполнять сложную обработку звука, обеспечивают стереозвучание, имеют собственное ПЗУ с хранящимися в нём сотнями тембров звучаний различных музыкальных инструментов.
Звуковые файлы обычно имеют очень большие размеры. Так, трёхминутный звуковой файл со стереозвучанием занимает примерно 30 Мбайт памяти. Поэтому звуковые платы помимо своих основных функций, обеспечивают автоматическое сжатие файлов.
Область применения звуковых плат — компьютерные игры, обучающие программные системы, рекламные презентации, "голосовая почта" (voice mail) между компьютерами, озвучивание различных процессов, происходящих в компьютерном оборудовании, таких, например, как отсутствие бумаги в принтере и т.п.
6.6 Видеокарта (видеоадаптер)
Видеоадаптер — это электронная плата, которая обрабатывает видеоданные (текст и графику) и управляет работой монитора. Посылает в дисплей сигналы управления яркостью лучей и сигналы развертки изображения.
Содержит
• графический процессор
• вспомогательные микросхемы (чипсет)
• оперативная память 128 Мб… 1Гб
• кулер
Видеоадаптер имеет вид отдельной платы расширения, которую вставляют в определенный слот материнской платы (в современных ПК это слот AGP), но в некоторых компьютерах он входит в состав материнской платы. Видеоадаптер получает от процессора компьютера команды по формированию изображения, конструирует это изображение в своей служебной памяти – видеопамяти и одновременно преобразует содержимое видеопамяти в сигнал, подаваемый на монитор – видеосигнал.
Наиболее распространенный видеоадаптер на сегодняшний день — адаптер SVGA (Super Video Graphics Array — супервидеографический массив), который может отображать на экране дисплея 1280х1024 пикселей при 256 цветах и 1024х768 пикселей при 16 миллионах цветов.
С увеличением числа приложений, использующих сложную графику и видео, наряду с традиционными видеоадаптерами широко используются разнообразные устройства компьютерной обработки видеосигналов:
Графические акселераторы (ускорители) — специализированные графические сопроцессоры, увеличивающие эффективность видеосистемы. Их применение освобождает центральный процессор от большого объёма операций с видеоданными, так как акселераторы самостоятельно вычисляют, какие пиксели отображать на экране и каковы их цвета.
TV-тюнеры — видеоплаты, превращающие компьютер в телевизор. TV-тюнер позволяет выбрать любую нужную телевизионную программу и отображать ее на экране в масштабируемом окне. Таким образом, можно следить за ходом передачи, не прекращая работу.
Дата добавления: 2015-01-29; просмотров: 141 | Поможем написать вашу работу | Нарушение авторских прав |
|