Читайте также:
|
|
Если код небольшой, например рассмотренный ранее код (6, 3), декодер может быть реализован в виде довольно простой схемы. Рассмотрим шаги, которые должны быть предприняты декодером: (1) вычислить синдром, (2) локализовать ошибочную комбинацию и (3) осуществить сложение по модулю 2 ошибочной комбинации и принятого вектора (что приводит к устранению ошибки). В примере 6.4, имея искаженный вектор, мы покажем, как с помощью последовательности этих шагов можно получить исправленное кодовое слово. Сейчас мы рассмотрим схему, показанную на рис. 6.12, где реализованы логические элементы исключающего ИЛИ и И, которые позволяют получить тот же результат для любой комбинации с одним ошибочным битом в коде (6, 3). Из табл. 6.2 и уравнения (6.39) можно записать все разряды синдрома через разряды принятых кодовых слов.
и
Мы используем эти выражения для синдромов при связывании схемы на рис. 6.12. Логический элемент "исключающее ИЛИ" — это и есть реализация той самой операции сложения (или вычитания) по модулю 2, поэтому он обозначен тем же символом "+". Маленький кружок в конце каждой линии, входящей в элемент И, означает операцию логического дополнения сигнала.
Искаженный сигнал подается на декодер одновременно в верхней части схемы, где происходит вычисление синдрома, и в нижней, где синдром преобразуется в соответствующую ошибочную комбинацию. Ошибка устраняется путем повторного добавления ее к принятому вектору, что дает в итоге исправленное кодовое слово.
Заметим, что с методической точки зрения рис. 6.12 составлен так, чтобы выделить алгебраические этапы декодирования — вычисление синдрома и ошибочной комбинации, а также выдачу исправленных выходных данных. В реальной ситуации код (n, k) обычно конфигурируется в систематическом виде.
Рис. 6.12. Схема реализации декодера для кода (6, 3)
Декодеру не нужно выдавать полное кодовое слово; на выходе у него должны быть только биты данных. Поэтому схема на рис. 6.12 упрощается за счет удаления заштрихованных элементов. Для более длинных кодов такая реализация намного сложнее; в данной ситуации более предпочтительной методикой декодирования является последовательная схема, а не рассмотренный здесь параллельный метод [4]. Важно также подчеркнуть, что схема на рис. 6.12 позволяет определять и исправлять только комбинации кода (6, 3) с одним ошибочным битом. Исправление комбинаций с двумя ошибочными битами потребует дополнительной схемы.
Дата добавления: 2014-12-15; просмотров: 107 | Поможем написать вашу работу | Нарушение авторских прав |