Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Министерство образования и науки Республики Казахстан

Читайте также:
  1. I. Государственный стандарт общего образования и его назначение
  2. III Школа человеческих отношений или науки о поведении.
  3. IV. Исследование текущего имиджа Российского образования и науки
  4. IV. Методология и теория исторической науки.
  5. Lt;question>. Как называются избирательные органы, организующие подготовку и проведение выборов в Республике Казахстан?
  6. А) по основаниям недействительности сделок, предусмотренным Гражданским кодексом Республики Казахстан
  7. А) Предмет науки истории и ее место в системе исторических наук
  8. Автоматизированные системы управления для учреждений высшего образования.
  9. Автономная некоммерческая организация высшего образования
  10. Административно-территориальные образования, имеют свою материальную базу в виде местных бюджетов и территориальных внебюджетных фондов

К специфическим ядрам таламуса относят переднее дорсальное, переднее вентральное, переднее медиальное, вентральное постлатеральное, вентральное постмедиальное, вентральное латеральное, а также латеральное и медиальное коленчатые тела. В функциональном отношении специфические ядра представляют собой важнейшую часть основных сенсорных и моторных систем, разрушение релейных ядер приводит к полной и необратимой потере соответствующей чувствительности или нарушениям движений.Путь соматосенсорной и кожной систем связан с задними вентральными (постлатеральным и постмедиальным) ядрами таламуса. Таламическое представительство каждого сегмента кожи являет собой скопление нейронов в форме пластин; проксимальные участки рецептивных полей расположены в дорсальной части пластинки, а дистальные участки — в вентральной части. Коже лица соответствуют нейронные группировки в медиальной части ядра, коже туловища — в средней части, коже нижних конечностей — в латеральной части, т.е. четко выражена соматотопическая организация. Точно так же разделены разные сенсорности: тактильная, температурная, от рецепторов мышц, сухожилий, внутренних органов. Размеры нейронных группировок рецептивных полей кожи неодинаковы. Более обширное представительство в таламусе имеют рецептивные поля с большой плотностью рецепторов (кожа лица, губ, кистей рук), чем рецептивные поля с небольшой плотностью рецепторов. К задним вентральным ядрам информация подходит по нескольким афферентным путям: 1) спино-кортикальному тракту (медиальная петля); 2) спино-цервикоталамическому тракту; 3) спинотригеминота-ламическому тракту. Сюда же подходят волокна от внутренних органов и пути вкусовой сенсорной системы. Проекции их идут в соматосенсорные области новой коры.

Вопрос 39.

Гипоталамус или подбугорье — отдел головного мозга, расположенный ниже таламуса, или «зрительных бугров», за что и получил своё название.Гипоталамус выполняет многообразные физиологические функции. Вегетативные ядра гипоталамуса отвечают за вегетативную регуляцию сосудистого тонуса, потоотделения, секреции слюны и мн.др., за вегетативное обеспечение эмоций, половой и пищевой активности и др. Нейросекреторные ядра гипоталамуса секретируют различные гормоны, в частности антидиуретический гормон, окситоцин и различные рилизинг-гормоны — соматотропин-рилизинг-гормон, тиреотропин-рилизинг-гормон, кортикотропин-рилизинг-гормон, гонадотропин-рилизинг-гормон. В нервных клетках ядер гипоталамуса образуются рилизинг- гормоны - вещества, регулирующие все тропные гормоны передней доли гипофиза, одни из них играют стимулирующую, другие - ингибирующую роль. Рилизинг- гормоны являются своеобразными универсальными химическими факторами, посредующими передачу импульсов на эндокринную систему. Регуляция половой функции осуществляется посредством синтеза и выделения гонадотропин-рилизинг-гормона (ГС-РГ). В гипоталамусе выделяют участки (центры), осуществляющие стимуляцию тонической (постоянной) секреции гормонов передней доли гипофиза, и центры, регулирующие циклическую (периодическую) секрецию гонадотропинов. Сонический центр секреции ГС-РГ функционирует в женском и мужском организме, обеспечивая постоянное выде-ление гонадотропинов, а циклический центр функционирует только в женском организме и обеспечивает ритмический выброс гонадотропинов.Различия в функциональной дифференцировке гипоталамуса определяются во время внутриутробного развития плода. На дифференцировку гипоталамуса влияют стероидные гормоны и другие вещества. Изменения гормонального состояния, возникающие при патологическом течении беременности (анемия, токсикозы и др.), употребление во время беременности лекарств, влияющих на обмен медиаторов в центральной нервной системе, приводят к нарушениям формирования гипоталамуса у внутриутробно развивающегося плода, формирования пола. В период полового созревания по сигналу, поступающему из гипоталамуса через гипофиз, половые железы начинают интенсивно вырабатывать соответствующие мужские или женские половые гормоны, под влиянием которых у подростка появляются вторичные половые признаки и эротические переживания. Клиническая картина, развивающаяся при патологии гипоталамуса, зависит от локализации поражения (передняя, средняя и задняя области) и от его характера (функциональное или органическое).При наличии патологии гипоталамической области наблюдается нарушение функций половой системы, половая слабость, нарушение менструального цикла. В детском возрасте патология гипоталамуса (нейроинфекции, травма, опухоли) может проявляться в нарушениях сроков полового созревания.Гипоталамус тесно анатомически и функционально связан с гипофизом и с лимбической системой. В частности, существует т.н. гипофизарная портальная система - совокупность кровеносных сосудов, связывающих гипоталамус с передней долей гипофиза

Вопрос 40.

У позвоночных гипоталамус представляет собой главный нервный центр, отвечающий за регуляцию внутренней Среды организма. Филогенетически - это довольно старый отдел головного мозга, и поэтому у наземных млекопитающих строение его относительно одинаково, в отличие от организации таких более молодых структур, как новая кора и лимбическая система. Гипоталамус управляет всеми основными гомеостатическими процессами. В то время как децеребрированному животному можно достаточно легко сохранить жизнь, для поддержания жизнедеятельности животного с удаленным гипоталамусом требуются особые интенсивные меры, так как у такого животного уничтожены основные гомеостатические механизмы. Принцип гомеостаза заключается в том, что при самых разнообразных состояниях организма, связанных с его приспособлением к резко изменяющимся условиям окружающей Среды (например, при тепловых или холодовых воздействиях, при интенсивной физической нагрузке и так далее), внутренняя Среда остается постоянной и параметры ее колеблются лишь в очень узких пределах. Наличие и высокая эффективность механизмов гомеостаза у млекопитающих, и в частности у человека, обеспечивают возможность их жизнедеятельности при значительных изменениях окружающей Среды. Животные, неспособные поддерживать некоторые параметры внутренней Среды, вынуждены жить в более узком диапазоне параметров окружающей Среды. Электрическое раздражение маленьких участков гипоталамуса сопровождается возникновением у животных типичных поведенческих реакций, которые столь же разнообразны, как и естественные видоспецифические типы поведения конкретного животного. Важнейшими из таких реакций являются оборонительное поведение и бегство, пищевое поведение (потребление пищи и воды), половое поведение и терморегуляторные реакции. Все эти поведенческие комплексы обеспечивают выживание особи и вида, и поэтому их можно назвать гомеостатическими процессами в широком смысле этого слова. В состав каждого из этих комплексов входят соматорный, вегетативный и гормональный компоненты. При локальном электрическом раздражении каудального кольца у бодрствующей кошки возникает оборонительное поведение, которое проявляется в таких типичных соматорных реакциях, как выгибание спины, шипение, расхождение пальцев, выпускание когтей, а также вегетативными реакциями - учащенным дыханием, расширением зрачков и пилоэрекцией в области спины и хвоста. Артериальное давление и кровоток в скелетных мышцах при этом возрастают, а кровоток в кишечнике снижается (рис.3 справа). Такие вегетативные реакции связаны главным образом с возбуждением адренергических симпатических нейронов. В защитном поведении участвуют не только соматорная и вегетативная реакции, но и гормональные факторы. При раздражении каудального отдела гипоталамуса болевые раздражения вызывают лишь фрагменты оборонительного поведения. Это свидетельствует о том, что нервные механизмы оборонительного поведения находятся в задней части гипоталамуса. Пищевое поведение, также связанное со структурами гипоталамуса, по своим реакциям почти противоположно оборонительному поведению. Пищевое поведение возникает при местном электрическом раздражении зоны, расположенной 2-3 мм дорсальнее зоны оборонительного поведения (рис.3 -1). В этом случае наблюдаются все реакции, характерные для животного в поисках пищи. Подойдя к миске, животное с искусственно вызванным пищевым поведением начинает есть, даже если оно не голодно, и при этом пережевывает несъедобные предметы. При исследовании вегетативных реакций можно обнаружить, что такое поведение сопровождается увеличенным слюноотделением, повышением моторики и кровоснабжения кишечника и снижением мышечного кровотока (рис.3). Все эти типичные изменения вегетативных функций при пищевом поведении служат как бы подготовительным этапом к приему пищи. Во время пищевого поведения повышается активность парасимпатических нервов желудочно-кишечного тракта.

Вопрос 41.

Средний мозг связывает два передних отдела мозга с двумя задними отделами мозга, поэтому все нервные пути головного мозга проходят через эту область, составляющую часть ствола головного мозга. Крышу среднего мозга образует четверохолмие, где находятся центры зрительных рефлексов и слуховых рефлексов. Верхняя пара бугорков четверохолмия получает сенсорные импульсы от глаз и мышц головы и контролирует зрительные рефлексы. Нижняя пара бугорков четверохолмия получает импульсы от ушей и мышц головы и контролирует слуховые рефлексы. В вентральной части среднего мозга расположены многочисленные центры или ядра, управляющие разнообразными бессознательными стереотипными движениями, таким как наклоны или повороты головы и туловища. Структура гипофиза и гипоталамуса связаны. В гипоталамусе находятся нейросекрестые клетки часть которых синтезирует лиерины, часть сатины. В ответ на выработку либеринов гипофиз синтезирует гормоны.

Кортиккопелии. Либеростатины, срмастатины, сосатолиберины. (рисунок)

Вопрос 42

Гипофиз располагается на основании головного мозга (нижней поверхности) в гипофизарной ямке турецкого седла клиновидной кости черепа. Турецкое седло прикрыто отростком твёрдой оболочки головного мозга — диафрагмой седла, с отверстием в центре, через которое гипофиз соединён с воронкой гипоталамуса промежуточного мозга; посредством её гипофиз связан с серым бугром, расположенным на нижней стенке III желудочка. По бокам гипофиз окружён пещеристыми синусами.РазмерыРазмеры гипофиза достаточно индивидуальны: переднезадний размер колеблется от 5 до 13 мм, верхненижний — от 6 до 8 мм, поперечный — от 3 до 5 мм.СтроениеГипофиз состоит из двух крупных различных по происхождению и структуре долей: передней — аденогипофиза (составляет 70—80 % массы органа) и задней — нейрогипофиза. Вместе с нейросекреторными ядрами гипоталамуса гипофиз образует гипоталамо-гипофизарную систему, контролирующую деятельность периферических эндокринных желёз. Развитие гипофиза.Закладка гипофиза происходит на 4—5 неделе эмбриогенеза. Передняя доля гипофиза развивается из эпителиального выпячивания дорсальной стенки ротовой бухты в виде пальцевидного выроста (кармана Ратке), направляющегося к основанию головного мозга, в области III желудочка, где встречается с будущей задней долей гипофиза, которая развивается позднее передней из отростка воронки промежуточного мозга.Сосуды и нервы гипофизаКровоснабжение гипофиза осуществляется из верхних и нижних гипофизарных артерий, являющихся ответвлениями внутренней сонной артерии. Верхние гипофизарные артерии вступают воронку гипоталамуса и, проникая в мозг, разветвляются в первичную гемокапиллярную сеть; эти капилляры собираются в портальные вены, которые направляются по ножке в переднюю долю гипофиза, где снова разветвляются на капилляры, образуя вторичную капиллярную сеть. Нижние гипофизарные артерии снабжают кровью преимущественно заднюю долю. Верхние и нижние гипофизарные артерии анастомозируют друг с другом. Венозный отток происходит в пещеристые и межпещеристые синусы твёрдой мозговой оболочки.Гипофиз получает симпатическую иннервацию от сплетения внутренней сонной артерии. Кроме того, в заднюю долю проникают множество отростков нейросекреторных клеток гипоталамуса.Функции гипофиза.В передней доле гипофиза соматотропоциты вырабатывают соматотропин, активирующий митотическую активность соматических клеток и биосинтез белка; лактотропоциты вырабатывают пролактин, стимулирующий развитие и функции молочных желез и жёлтого тела; гонадотропоциты — фолликулостимулирующий гормон (стимуляция роста фолликулов яичника, регуляция стероидогенеза) и лютеинизирующий гормон (стимуляция овуляции, образования жёлтого тела, регуляция стероидогенеза) гормоны; тиротропоциты — тиреотропный гормон (стимуляция секреции йодсодержащих гормонов тироцитами); кортикотропоциты — адренокортикотропный гормон (стимуляция секреции кортикостероидов в пучковой и сетчатой зонах коры надпочечников). В средней доле гипофиза меланотропоциты вырабатывают меланоцитстимулирующий гормон (регуляция обмена меланина); липотропоциты — липотропин (регуляция жирового обмена). В задней доле гипофиза питуициты активируют вазопрессин и окситоцин в накопительных тельцах.

Вопрос 43

.Аденогипофиз - передняя основная доля - 70% массы железы в гипофизе. Аденогипофиз состоит из трех основных типов железистых клеток: ацидофильных, базофильных, составляющих группу хромофилов, и хромофобов.Продукция гормонов аденогипофиза, в свою очередь, зависит от либеринов и статинов — гормонов гипоталамуса, поступающих в воротную систему гипофиза. Секреция либеринов и статинов контролируется адренергическими, холинергическими и дофаминергическими нейронами высших нервных центров. Кроме того, секреция некоторых гормонов аденогипофиза и либеринов тормозится гормонами периферических эндокринных желез по принципу отрицательной обратной связи. Таким образом, в регуляции роста участвуют гормоны гипоталамуса, аденогипофиза и периферических эндокринных желез — мишеней аденогипофизарных гормонов. Благодаря своему множественному гормональному воздействию на организм, аденогипофиз является ключевым регулятором эндокринной системы, секретируемые им гормоны моделируют функции соответствующих периферических эндокринных желез: щитовидной, коры надпочечников, гонад. 10-25% аденогипофиза приходится на долю пролактинсекретирующих клеток, во время беременности их число достигает 70% и гипофиз увеличивается практически в два раза. В регуляции функции аденогипофиза в организме человека играет роль эйкозаноиды. Секреция всех аденогипофизарных гормонов характеризуются суточной периодичностью: в дневные часы уровень гормонов низкий, а в ночные часы уровень гормонов возрастает. Выпадение тропных функций гипофиза приводит к развитию соответственно вторичногогипотериоза,гипокортицизма,гипогонадизма. Клиническая картина этих состояний сходна с первичным поражением этих эндокринных желез (протекает тяжелее вторичной). Изолированное выпадение той или иной тропной функции аденогипофиза представляет редкость. Таким образом, вторичному гипокортицизму будет сопутствовать вторичный гипотериоз, гипогонадизм и дефицит гормона роста.

 

вопрос 44 -45.

Нейрогипо́физ, neurohypophysis, состоит из нервной доли и воронки, infundibulum, соединяющей нервную долю со срединным возвышением. Нервная доля образована клетками эпендимы (питуицитами) и окончаниями аксонов нейросекреторных клеток паравентрикулярного и супраоптического ядер гипоталамуса промежуточного мозга, в которых и синтезируются вазопрессин (антидиуретический гормон) и окситоцин, транспортируемые по нервным волокнам, составляющим гипоталамо-гипофизарный тракт, в нейрогипофиз. В задней доле гипофиза эти гормоны депонируются и оттуда поступают в кровь. Воронка гипофиза, соединяясь с воронкой гипоталамуса, образует ножку гипофиза. Вазопрессин выполняет в организме две функции: 1) Усиление реабсорбции воды в собирательных трубочках почек (это антидиуретическая функция вазопрессина); 2) влияние на гладкую мускулатуру артериол, однако название "вазопрессин" не совсем соответствует свойству этого гормона суживать сосуды. Дело в том, что в нормальных физиологических концентрациях он сосудосуживающим эффектом не обладает. Сужение сосудов может происходить при экзогенном внедрении гормона в больших количествах или же при кровопотере, когда гипофиз интенсивно выделяет этот гормон. При недостаточности нейрогипофиза развивается синдром несахарного диабета, при котором с мочой в день может теряться значительное количество воды (15л/сутки), так как снижается её реабсорбция в собирательных трубочках. Окситоцин во время беременности не действует на матку, так как под воздействием прогестерона, выделяемого жёлтым телом, она становится нечувствительным к данному гормону. Окситоцин способствует сокращению миоэпителиальных клеток, способствующих выделению молока из молочных желез.

В процессе отногенеза гипофиз формируется из 2 частей: аденогипофиз – из первичной полости., и нейрогипофиз – из выроста гипоталамуса.

Передняя часть синтезирует около 150 гормонов, задняя часть хранит гормоны. Например: Вазопресет (водиный обмен); Окситотоции (сокращение матки во время родов).Нейросенсорные клетки синтезируются в гипоталамусе и передвигаются в заднюю часть нейрогипофиза.

Вопрос 46.

нейроэндокринный ответ.

Это старая, древняя система. Представляет из себя трансформацию нервных импульсов, синтез. Функции: синтез гормонов (медиатр), управление ими, продолжительное воздействие на организм.

Сначало синтезируются гормоны (медиатр) потом под воздействием тока взаимодействует с рецепторами и вырабатывает нервный импульс. Медиатр хранится в везикулах.

Соединение химическое + соединение электронных реакций очень выгодно, в плане длительного воздействия.

Вопрос 47.

Эпифиз - паренхиматозный дольчатый орган. Снаружи покрыт капсулой из рыхлой волокнистой соединительной ткани, от которой отходят септы, разделяющие эпифиз на дольки. Паренхима долек образована анастомозирующими клеточными тяжами, островками и фолликулами и представлена клетками двух типов: пинеалоцитами и глиоцитами. Пинеалоциты составляют до 90 % клеток. Глиоциты эпифиза, относящиеся, очевидно, к астроглии, составляют до 5 % всех клеток паренхимы. Они распределены по всей паренхиме дольки, иногда формируя группы по 3-4 клетки. Функция глиоцитов - опорная, трофическая, регуляторная. Наиболее активно эпифиз функционирует в молодом возрасте. При старении орган уменьшается, в нем могут откладываться в виде кристаллов фосфаты и карбонаты кальция, которые связаны с органическим матриксом разрушенных клеток (эпифизарный песок).Эпифиз синтезирует следующие гормоны:Серотонин и мелатонин регулируют "биологические часы" организма. Гормоны являются производными аминокислоты триптофана. Вначале из триптофана синтезируется серотонин, а из последнего образуется мелатонин. Он является антагонистом меланоцитостимулирующего гормона гипофиза, продуцируется в ночное время, тормозит секрецию гонадолиберина, тиреоидных гормонов, гормонов надпочечников, гормона роста, настраивает организм на отдых. У мальчиков содержание мелатонина снижается при половом созревании. У женщин наибольший уровень мелатонина определяется в менструацию, наименьший - при овуляции. Продукция серотонина существенно преобладает в дневное время. При этом солнечный свет переключает эпифиз с образования мелатонина на синтез серотонина, что ведет к пробуждению и бодрствованию организма (серотонин является активатором многих биологических процессов).Около 40 гормонов пептидной природы, из которых наиболее изучены:1) гормон, регулирующий обмен кальция; 2)гормон аргинин-вазотоцин, регулирующий тонус артерий и угнетающий секрецию гипофизом фолликулостимулирующего гормона и лютеинизирующего гормона…Показано, что гормоны эпифиза подавляют развитие злокачественных опухолей. Свет составляет функцию эпифиза, а темнота стимулирует его. Выявлен нейронный путь: сетчатка глаза - ретиногипоталамический тракт - спинной мозг - симпатические ганглии - эпифиз.Таким образом, функциональная активность наиболее выражена в детском возрасте. В это время он предотвращает преждевременное половое созревание, позволяя организму ребенка окрепнуть физически. Функции эпифиза подавляются световым воздействием. Очевидно, избыточная инсоляция тормозит угнетающее действие эпифиза на гонады, чем и объясняется более раннее половое созревание детей в южных странах

48 вопрос:

В последние годы в России, так же как и в развитых странах, все чаще говорят не только о профессиональном стрессе, но и о синдроме профессионального сгорания или выгорания работников (далее будет применяться термин «профессиональное выгорание» как наиболее адекватный).

Профессиональное выгорание — это синдром, развивающийся на фоне хронического стресса и ведущий к истощению эмоционально-энергических и личностных ресурсов работающего человека. Профессиональное выгорание возникает в результате внутреннего накапливания отрицательных эмоций без соответствующей «разрядки» или «освобождения» от них. По существу, профессиональное выгорание — это дистресс или третья стадия общего адаптационного синдрома — стадия истощения (по Г. Селье).

 

Стресс-синдром - сумма неспецифических реакций обеспечивающих:

- активизацию гипоталамо-гипофизарно-надпочечниковой системы;

- увеличение поступления в кровь и ткани адаптивных гормонов;

- повышение резистентности организма к воздействиям среды.

 

Вопрос 49

Передний мозг, развивается в связи с обонятельным рецептором и вначале (у водных животных) является чисто обонятельным мозгом, rhinencephalon. С переходом животных из водной среды в воздушную роль обонятельного рецептора возрастает, так как с его помощью определяются содержащиеся в воздухе химические вещества, сигнализирующие животному о добыче, опасности и других жизненно важных явлениях природы с далекого расстояния, - дистантный рецептор.Поэтому, а также благодаря развитию и совершенствованию других анализаторов передний мозг у наземных животных сильно разрастается и превосходит другие отделы центральной нервной системы, превращаясь из обонятельного мозга в орган, управляющий всем поведением животного.Соответственно двум основным формам поведения: 1) инстинктивному, основанному на опыте вида (безусловные рефлексы), и

2) индивидуальному, основанному на опыте индивида (условные рефлексы), в переднем мозге развиваются две группы центров:1) базальные, или подкорковые, ядра полушарий большого мозга; 2) кора большого мозга. В эти две группы центров переднего мозга поступают все нервные импульсы и к ним протягиваются все афферентные чувствительные пути, которые (за немногими исключениями) предварительно проходят через один общий центр - таламус, thalamus. Приспособление организма к среде путем изменения обмена вевеществ обусловило возникновение в переднем мозге высших центров, ведающих вегетативными процессами (гипоталамус, hypothalamus).

Из двух частей переднего мозга, промежуточного мозга, diencephalon, и конечного, telencephalon, кора и подкорковые ядра относятся к конечному мозгу, а таламус и гипоталамус - к промежуточному.

Вопрос 50.

Передний мозг, prosencephalon, развивается в связи с обонятельным рецептором и вначале (у водных животных) является чисто обонятельным мозгом, rhinencephalon. С переходом животных из водной среды в воздушную роль обонятельного рецептора возрастает, так как с его помощью определяются содержащиеся в воздухе химические вещества, сигнализирующие животному о добыче, опасности и других жизненно важных явлениях природы с далекого расстояния, - дистантный рецептор. Поэтому, а также благодаря развитию и совершенствованию других анализаторов передний мозг у наземных животных сильно разрастается и превосходит другие отделы центральной нервной системы, превращаясь из обонятельного мозга в орган, управляющий всем поведением животного

Вопрос 51.

Базальные ядра полушарий. Функциональное предназначение. Базальные (подкорковые) ядра головного мозга располагаются под белым веществом внутри переднего мозга, преимущественно в лобных долях. К базальным ядрам относят хвостатое ядро (nucleus caudatus), скорлупу (putamen), ограду (claustrum), бледный шар (globus pallidus). Хвостатое ядро и скорлупа имеют сходное гистологическое строение. Их нейроны относятся ко II типу клеток Гольджи, т. е. имеют короткие дендриты, тонкий аксон; их размер до 20 мк. Этих нейронов в 20 раз больше, чем нейронов Гольджи I типа, имеющих разветвленную сеть дендритов и размер около 50 мк. Функции любых образований головного мозга определяются прежде всего их связями, которых у базальных ядер достаточно много. Эти связи имеют четкую направленность и функциональную очерченность. Основная часть аксонов хвостатого ядра и скорлупы идет к бледному шару, отсюда — к таламусу и только от него — к сенсорным полям. Следовательно, между этими образованиями имеется замкнутый круг связей. Хвостатое ядро и скорлупа имеют также функциональные связи со структурами, лежащими вне этого круга: с черной субстанцией, красным ядром, люисовым телом, ядрами преддверия, мозжечком, γ -клетками спинного мозга. Хвостатое ядро и бледный шар принимают участие в таких интегративных процессах, как условнорефлекторная деятельность, двигательная активность. Это выявляется при стимуляции хвостатого ядра, скорлупы и бледного шара, деструкции и при регистрации электрической активности. У человека стимуляция хвостатого ядра во время нейрохирургической операции нарушает речевой контакт с больным: если больной что-то говорил, то он замолкает, а после прекращения раздражения не помнит, что к нему обращались. В случаях травм головного мозга с раздражением головки хвостатого ядра у больных отмечается ретро-, антеро- или ретроантероградная амнезия. Стимуляция бледного шара в отличие от стимуляции хвостатого ядра не вызывает торможения, а провоцирует ориентировочную реакцию, движения конечностей, пищевое поведение (обнюхивание, жевание, глотание и т.д.).Повреждение бледного шара вызывает у людей гипомимию, маскообразность лица, тремор головы, конечностей (причем этот тремор исчезает в покое, во сне и усиливается при движениях), монотонность речи. При повреждении бледного шара наблюдается миоклония — быстрые подергивания мышц отдельных групп или отдельных мышц рук, спины, лица.В первые часы после повреждения бледного шара в остром опыте на животных резко снижалась двигательная активность, движения ха-рактеризовались дискоординацией, отмечалось наличие незавершенных движений, при сидении — поникшая поза. Начав движение, животное долго не могло остановиться. У человека с дисфункцией бледного шара затруднено начало движений, исчезают вспомогательные и реактивные движения при вставании, нарушаются содружественные движения рук при ходьбе, появляется симптом пропульсии: длительная подготовка к движению, затем быстрое движение и остановка. Такие циклы у больных повторяются многократно. Ограда (claustrum) содержит полиморфные нейроны разных типов. Она образует связи преимущественно с корой большого мозга.Глубокая локализация и малые размеры ограды представляют определенные трудности для ее физиологического исследования. Это ядро имеет форму узкой полоски серого вещества, расположенного под корой большого мозга в глубине белого вещества.Стимуляция ограды вызывает ориентировочную реакцию, поворот головы в сторону раздражения, жевательные, глотательные, иногда рвотные движения. Раздражение ограды тормозит условный рефлекс на свет, мало сказывается на условном рефлексе на звук. Стимуляция ограды во время еды тормозит процесс поедания пищи.Известно, что толщина ограды левого полушария у человека несколько больше, чем правого; при повреждении ограды правого полушария наблюдаются расстройства речи.Таким образом, базальные ядра головного мозга являются интегративными центрами организации моторики, эмоций, высшей нервной деятельности, причем каждая из этих функций может быть усилена или заторможена активацией отдельных образований ба-зальных ядер.

Вопросы 52.

Особенности строения и основные функции полосатого тела.

Топографически и функционально хвостатое и чечевицеобразное ядра объединяются в полосатое тело – структурное обазование конечного мозга, которое получает афферентные импульсы главным образом от таламуса, отчасти от коры, посылает афферентные импульсы к бледному шару частично затормаживая его работу(парное образование, входящее в состав чечевицеобразного ядра;двигательное ядро, регулирует и координирует работу среднего и заднего мозга), полосатое тело регулирует обмен веществ, тепловыведение и теплообразование, сосудистые реакции. Полосатое тело связано с гипоталамусом.Полоса́тое те́ло (лат. corpus striatum), стриатум — анатомическая структура конечного мозга, относящаяся к базальным ядрам полушарий головного мозга. На горизонтальных и фронтальных сечениях мозга полосатое тело имеет вид чередующихся полос серого вещества и белого вещества.Гистологическое строениеМикроскопически состоит из крупных нейронов с длинными отростками, которые выходят за пределы стриопаллидарной системы.ФункцииПолосатое тело регулирует мышечный тонус, уменьшая его; участвует в регуляции работы внутренних органов; в осуществлении различных поведенческих реакций (пищедобывающее поведение); участвует в формировании условных рефлексов. При разрушении полосатого тела происходит:

1. гипертонус скелетных мышц,

2. нарушение сложных двигательных реакций и пищедобывающего поведения;

3. тормозится формирование условных рефлексов

полосатое тело- конечный мозг.: обонятельный мозг, кора БП, базальные ядра. Полосатое тело – подкорковые базальные ядра. Тормозные воздействия на мотонейроны (перед.рога) СМ, уменьшает излишнюю мышечную деят-ть.

Вопрос 53.

Анатомические особенности строения коры головного мозга.

Кора головного мозга (кгм) образована равномерным слоем серого вещества 1,3 – 4,5 мм толщиной, содержащего нервные клетки, представляется как бы сложенным в складки, благодаря чему поверхность имеет сложный рисунок, состоящий из чередующихся между собой в различных направлениях борозд и валиков между ними, называемых извилинами. Общая площадь кгм около 220 тыс ммІ. Величина и форма борозд подвержены значительным индивидуальным колебаниям, поэтому у всех особей рисунок разный. Глубокие постоянные борозды используются для разделения каждого полушария на большие участки – доли, которые разделяются на дольки и извилины. 5 долей: лобная, теменная, височная, затылочная, и островок. Кора головного мозга представляет собой тонкий слой нервной ткани, образующей множество складок. Общая поверхность коры составляет примерно 2200 кв.см. Толщина коры в различных частях больших полушарий колеблется от 1,3 до 4,5 мм, а общий объем составляет 600 куб.см. В состав коры входит 10 000 - 100 000 млн нейронов и еще большее число глиальных клеток (точное число которых еще не известно). В коре наблюдается чередование слоев, содержащих преимущественно тела нервных клеток, со слоями, образованными в основном их аксонами. Более 90% всех областей коры имеет типичное шестислойное строение и называется изокортексом. Слои нумеруются с поверхности вглубь: 1. Молекулярный слой коры головного мозга - образован волокнами, сплетенными между собой, содержит мало клеток. 2. Наружный зернистый слой коры головного мозга - характеризуется густым расположением мелких нейронов самой различной формы. В глубине располагаются малые пирамидные клетки (названные так благодаря своей форме). 3. Наружный пирамидный слой коры головного мозга - состоит в основном из пирамидных нейронов разной величины, более крупные клетки лежат более глубоко. 4. Внутренний зернистый слой коры головного мозга - характеризуется рыхлым расположением мелких нейронов различной величины, мимо которых проходят плотные пучки волокон перпендикулярно к поверхности коры. 5. Внутренний пирамидный слой коры головного мозга - состоит в основном из средних и больших пирамидных нейронов, апикальные дендриты которых простираются до молекулярного слоя. 6. Слой веретеновидных клеток коры головного мозга (фузиформных клеток коры головного мозга) - в нем расположены веретеновидные нейроны, глубинная часть этого слоя переходит в белое вещество головного мозга. На основании плотности, расположения и формы нейронов кора головного мозга делится на несколько полей, которые в некоторой степени совпадают с зонами, которым на основании физиологических и клинических данных приписывают определенные функции. С помощью электрофизиологических методов установлено, что в коре можно различить области трех типов в соответствии с функциями, которые выполняют находящиеся в них клетки: сенсорные зоны коры головного мозга, ассоциативные зоны коры головного мозга и двигательные зоны коры головного мозга. Взаимосвязи между этими зонами позволяют коре большого мозга контролировать и координировать все произвольные и некоторые непроизвольные формы деятельности, включая такие высшие функции, как память, учение, сознание и свойства личности. Функции некоторых участков коры, в частности обширных передних областей - префронтальных зон коры головного мозга - остаются еще неясными. Эти области, а также ряд других участков мозга, называют немыми зонами коры головного мозга, так как при раздражении их электрическим током не возникает никаких ощущений или реакций. Предполагают, что эти зоны ответственны за наши индивидуальные особенности, или личность. Удаление этих зон или перезку проводящих путей, идущих от них к остальному мозгу (префронтальную лоботомию)применяли для снятия у больных острого возбуждения, но от этого пришлось отказаться из-за таких побочных эффектов, как снижение уровня сознания и интеллекта, способности к логическому мышлениию и способности к творчеству. Эти побочные эффекты косвенно указывают на функции, выполняемые префронтальными зонами.

Вопрос 54

.. Лимбическая система. Анатомическое строение. Функциональное предназначение.

Лимбическая система – наиболее древняя часть коры, включающая в себя ряд образований коркового и подкоркового уровня (лобные доли мозга, поясная извилина, мозолистое тело, серый покров, свод, гиппокамп, миндалина и сосцевидные тела, таламус, стриопаллидарная система, ретикулярная формация).

Основные ее функции:

1) регуляция вегетативных процессов (особенно пищеварения),

2) регуляция поведенческих реакций,

3) формирование и регуляция эмоций, сна,

4) формирование и проявление памяти.

Лимбическая система формирует положительные и отрицательные эмоции со всеми сопровождающими и вегетативными, эндокринными и двигательными компонентами. Она создает мотивацию поведения, просчитывает способы действий, пути достижения полезного результата.

Вначале под лимбой понимались лишь краевую зону коры полушария, расположенную в виде кольца на границе со стволом мозга, и относили к нему поясную извилину, перешеек и гиппокампальную извилину. Позднее к лимбической системе стали относить и другие структуры обонятельного мозга: парагиппокампальную извилину вместе с крючком, обонятельную луковицу, обонятельный тракт, обонятельный треугольник. К лимбической системе также относят ряд подкорковых структур, таких как миндалевидное ядра, дра прозрачной перегородки (септальные), переднее таламическое ядро. Выявлены мощные связи гиппокампа с сосцевидными и септальными ядрами посредством свода, а с миндалевидными ядрами- с помошью концевой полоски,которые замыкают структуры лимбической системы в круг Пейпеца. Основным входом в лимбическую систему является обонятельный тракт, однако она получает информацию и от остальных анализаторов, а также от лобной коры. Лимбическая система, контролирует эмоциональное поведение, сон, бодрствование, сексуальное поведение, а также процессы научения и память, играет значимую роль в мотивации поведения. Наиболее важную роль играет в процессах памяти играет гипплкамп. У людей с тяжелыми двусторонними поражениями гипокампа процессы научения серьезно нарушается. После повреждения гиппокампа они не могли хранить в памяти то, о чем узнавали; они неспособны были даже вспомнить имя или лицо чел, которого только увидели. Но память о событиях сохранялась. Эксперменты с имплантацией электродов в гмппокам крыс выявил, что у этих животных гиппокамп играет важнейшую роль в усвоении окружающего мира.

Вопрос 55

Основные элементы этого круга являются: поясная извилина – перешеек- гиппокамп- свод- сосцевидные тела – сосцевидно-таламический пучок – переднее ядро таламуса – поясная извилина.

Лимбическая система головного мозга - это центр эмоций, средоточие "фибров души". Несколько структур лимбической системы (важнейшие из них - это миндалина, гиппокамп, гипоталамус, поясная извилина) образуют замкнутый контур - круг Пейпеца.

Перемещаясь по этому контуру, возбуждение создает длительные эмоциональные состояния и "щекочет нервы", пробегая сквозь центры страха и агрессии, наслаждения и отвращения.А еще этот контур участвует в процессах кратковременной памяти. Так, благодаря гиппокампу мы запоминаем то, что "важно", а прежде - замечаем "новое", сомневаемся и делаем выбор. Информация, получившая эмоциональную окраску, запоминается не в пример лучше "мертвых фактов", которые в один гиппокамп влетают - в другой вылетают... А при сильных негативных переживаниях наблюдается обратный процесс: стирание следов памяти, амнезия. Другая функция лимбической системы - управление работой внутренних органов, желез и сосудов. Здесь главенствует гипоталамус. По сравнению с глыбами полушарий он кажется совсем крохотным. Однако нарушение работы центров, сосредоточенных на этом "пятачке", влечет за собой всевозможные недуги: ожирение и бессонницу, диабет и лихорадку, гипертонию и половое бессилие. Еще из гипоталамуса мозг "дирижирует" всей эндокринной системой. Не удивительно, что эмоциональные бури, прокатываясь по лимбической системе, так сказываются на состоянии нашего организма.А по своей эволюционной природе лимбическая система - это обонятельный мозг. Ее первоначальное предназначение - воспринимать и анализировать химические сигналы. Поэтому ее "химическая кухня" очень богата регуляторами и посредниками и чувствительна к воздействию психоактивных веществ извне.Для чего вся эта справка? Дело в том, что лимбическую систему в каком-то смысле можно считать "центром зомбирования". В определенном возрасте - в раннем детстве и в подростковом периоде - здесь активно происходит импринтинг, или запечатление образцов для слепого подражания, для запуска автоматических программ поведения. В эти периоды из-за обостренной эмоциональности в памяти больше откладывается не логическая суть событий, а связанные с ними переживания. И ключом, позволяющим вновь включить эти чувства и побуждения - совершенно бессознательно, обычно становится химический сигнал: запах, вкус или одурманивающее вещество. Так, иногда если пахнет хлоркой и краской, какая-то тоска вдруг сожмет сердце, в ушах отзовется детский визг, а язык будто обожжет вкус кефира.

Вопрос 56.

Основные три группы клеток кбп, их функциональное предназначение.5 слоев кбп:

1)молекулярный/наружный (мелкие, мультиполярные клетки+дендриты с нижлежащих слоев);

2)наружный зернистый (мелкие звездчатые мультиполярные клетки, дендриты которых уходят вверх, а аксоны состоят в белом веществе)

3)слой пирамидных клеток (содержит малые, средние, крупные пирамидные, и не большое количество звездчатых клеток)

4)внутренний зернистый слой(в некоторых участках вообще отсутствует; мелкие звездчатые клетки; этот слой является местом окончания основной массы проекционных афферентных волокон)

5)слой узловых клеток (крупные пирамидные клетки – клетки Беца;из этого слоя формируются двигательные произвольные пути – проекционные эфферентные пути)

6)полиморфный слой (образован мелкими веретенообразными клетками, с короткими извилистыми верхушечными дендритами+аксоны, формирующие белое вещество)

Эти слои делятся на три большие функциональные группы:1)3 и 4 слои (на них заканчиваются все афферентные волокна от всех видов чувствительности); 2)5 слой (по нему вся информация передаетя во все органы, следовательно он управляет всеми органами и системами); 3) 1, 2 и 6 слои (осуществляют связь между всеми слоями и обработка всей информации).

№57.Анатомическое строение и функциональное предназначение нейроглии.

Нейроглия, или просто глия, была открыта великим немецким ученым-патологоанатомом Рудольфом Вирховым. Этот термин обозначает совокупное количество всех клеток в мозге (кроме нейронов), которые своими отростками заполняют пространство между нервными клетками (нейронами) и мозговыми капиллярами.

Клетки нейроглии имеют два вида глиоциты и микроглия. Нейроглия и нейроны имеют некоторые различия. В отличие от последних, глия способна делиться, но не может передавать и генерировать импульсы. Нейроглия состоит в довольно тесном контакте с нейронами, поэтому процессы возбуждения нервных волокон сказываются на электрических функциях глиальных элементов.

Клетки глии занимают 50% объема всей центральной нервной системы, а количество их превышает количество нейронов в десять раз. Однако глиальные клетки по своему размеру намного меньше клеток-нейронов.

К основным функциям нейроглии относятся: опорная и защитная функции. Помимо этого, глия обеспечивает разнообразные обменные процессы в нервной ткани и способствует ее быстрому восстановлению после травм и инфекций.

№58Белое вещество полушарий. Проводящие пути конечного мозга.

Белое вещество полушарий

Все пространство между серым веществом мозговой коры и базальными ядрами занято белым веществом. Белое вещество полушарий образовано нервными волокнами, связывающими кору одной извилины с корой других извилин своего и противоположного полушарий, а также с нижележащими образованиями. Топографически в белом веществе различают четыре части, не резко отграниченные друг от друга:

1) белое вещество в извилинах между бороздами;

2) область белого вещества в наружных частях полушария —полуовальный центр (centrum semiovale);

3) лучистый венец (corona radiata), образованный лучеобразно расходящимися волокнами, входящими во внутреннюю капсулу (capsula interna) и покидающими ее;

4) центральное вещество мозолистого тела (corpus callosum), внутренней капсулы и длинные ассоциативные волокна. Нервные волокна белого вещества делят на ассоциативные, комиссуральные и проекционные. Ассоциативные волокна связывают между собой различные участки коры одного и того же полушария. Они разделяются на короткие и длинные. Короткие волокна связывают между собой соседние извилины в форме дугообразных пучков. Длинные ассоциативные волокна соединяют более отдаленные друг от друга участки коры.

Комиссуральные волокна, входящие в состав мозговых комиссур, или спаек, соединяют не только симметричные точки, но и кору, принадлежащую разным долям противоположных полушарий. Большинство комиссуральных волокон идет в составе мозолистого тела, которая связывает между собой части обоих полушарий, относящихся neencephalon. Две мозговые спайки, commissura anterior и commissura fornicis, гораздо меньше по своим размерам относятся к обонятельному мозгу rhinencephalon и соединяют: commissura anterior —обонятельные доли и обе парагиппокампальные извилины, commissura fornicis —гиппокампы.

Проекционные волокна связывают кору полушарий большого мозга с нижележащими образованиями, а через них с периферией. Эти волокна делят на центростремительные (восходящие, кортико-петальные, афферентные), проводящие возбуждение по направлению к коре, и центробежные (нисходящие, кортико-фугальные, эфферентные). Проекционные волокна в белом веществе полушария ближе к коре образуют лучистый венец, и затем главная часть их сходится во внутреннюю капсулу, которая представляет собой слой белого вещества между чечевицеобразным ядром (nucleus lentiformis) с одной стороны, и хвостатым ядром (nucleus caudatus) и таламусом (thalamus) —с другой. На фронтальном разрезе мозга внутренняя капсула имеет вид косо идущей белой полосы, продолжающейся в ножку мозга. Во внутренней капсуле различают переднюю ножку (crus anterius), —между хвостатым ядром и передней половиной внутренней поверхности чечевицеобразного ядра, заднюю ножку (crus posterius),- между таламусом и задней половиной чечевицеобразного ядра и колена (genu), лежащая на месте перегиба между обеими частями внутренней капсулы. Проекционные волокна по их длине могут быть разделены на следующие три системы, начиная с самых длинных:

1. проводит двигательные волевые импульсы к мышцам туловища и конечностей.

2. Tractus corticonuclearis —проводящие пути к двигательным ядрам черепных нервов. Так как все двигательные волокна собраны на небольшом пространстве во внутренней капсуле (колено и передние две трети ее задней ножки), то при повреждении их в этом месте наблюдается односторонний паралич противоположной стороны тела.

3. Tractus corticopontini —пути от мозговой коры к ядрам моста. При помощи этих путей кора большого мозга оказывает тормозящее и регулирующее влияние на деятельность мозжечка.

4. Fibrae thalamocorticalis et corticothalamici —волокна от таламуса к коре и обратно от коры к таламусу.

№59 Ассоциативные,комиссуральные и проекционные волокна проводящих путей конечного мозга

Проводящими путями головного мозга называют совокупность функционально равных нейронов, ответственных за проведение импульса к серому веществу головного мозга либо серому веществу, лежащему за его пределами. Выделяют ассоциативные, комиссуральные и проекционные пути. Первые соединяют различные участки серого вещества, расположенного в том же полушарии. Среди них выделяют короткие и длинные. Короткие ассоциативные пути расположены в пределах мозговой доли – внутридолевые волокна. Они также подразделяются на интракор-тикальные (дугообразные), когда пучок волокон не покидает кору и огибает извилину в форме дуги; и экстракортикальные, когда нервный путь выходит за пределы серого вещества. Длинные ассоциативные пути соединяют группы нервных клеток, лежащих в одном полушарии, но в различных его долях. К наиболее значимым из них относят верхний продольный пучок (связывает кору лобной, теменной и затылочной долей), нижний продольный пучок (соединяет височную и затылочную доли) и крючковидный пучок (связывает лобную долю с передней частью височной). Ко-миссуральные, или спаечные нервные пути связывают участки серого вещества различных полушарий. С их помощью координируется деятельность аналогичных нервных центров полушарий мозга. Переходы комиссуральных волокон с одного полушария на другое образуют спайки. Всего их три: мозолистое тело, передняя спайка и спайка свода. Мозолистое тело образовано волокнами, соединяющими новые отделы мозга, в белом веществе полушарий эти волокна расходятся веерообразно. Колено и клюв мозолистого тела несут волокна от лобных долей головного мозга, в белом веществе пучки этих волокон образуют лобные щипцы по бокам от продольной щели головного мозга. Участки коры центральных извилин, височных, теменных долей связаны посредством ствола мозолистого тела. Валик мозолистого тела несет волокна от задних областей теменных, а также затылочных долей. В белом веществе по бокам от продольной щели головного мозга пучки этих волокон образуют затылочные щипцы. Спайка свода соединяет серое вещество височных долей и гиппокампа разных полушарий.

Передняя спайка состоит из волокон, идущих от медиальных участков коры височных долей и коры области обонятельных треугольников.

Кроме ассоциативных и комиссуральных проводящих путей существуют еще проекционные, соединяющие серое вещество больших полушарий с нижележащими структурами центральной нервной системы, в том числе со спинным мозгом, а также просто различных скоплений нейронов, различных отделов ЦНС между собой. Благодаря проекционным волокнам осуществляется взаимосвязь и совместная деятельность структур ЦНС. Среди проекционных путей выделяют восходящие (афферентные) и нисходящие (эфферентные). Первые несут в головной мозг информацию, полученную от рецепторов как внешней, так и внутренней среды. В связи с этим по характеру идущей информации восходящие пути бывают экстероцептивными (импульсы от болевых, температурных, тактильных рецепторов кожи и импульсы от органов чувств – зрительные, вкусовые, слуховые, обонятельные), про-приоцептивными (несут импульсы от рецепторов мышечно-сухо-жильно-суставного аппарата о положении тела, мышечной работе и прочее) и интероцептивными (проводят информацию о внутренней среде организма, полученную от рецепторов внутренних органов и сосудов).

№ 60 ОБОЛОЧКИ ГОЛОВНОГО МОЗГА

Головной мозг, как и спинной, окружен тремя соединительнотканными листками, или оболочками,

межоболочечным пространством.

Твердая оболочка головного мозга. отличается по строению от аналогичной оболочки спинного мозга. Она является одновременно надкостницей на внутренней поверхности костей черепа, с которыми связана непрочно. В области основания черепа оболочка дает ряд отростков, проникающих в щели и отверстия костей черепа, чем объясняется большая прочность прикрепления здесь твердой оболочки головного мозга. Более того, в местах выхода из полости черепных нервов твердая оболочка головного мозга на некотором протяжении продолжает окружать нерв, образуя его влагалище и проникая вместе с нервом через отверстие наружу.

На внутренней поверхности твердой оболочки различают несколько отростков, которые проникают в продольную щель большого мозга и отделяют друг от друга его полушария. Задний отдел серпа срастается с другим отростком оболочки - наметом мозжечка, отделяющим затылочные доли полушарий от мозжечка.

Продолжением серпа большого мозга является серп мозжечка, проникающий снизу между полушариями мозжечка. Еще один отросток окружает сверху турецкое седло, образуя его диафрагму и защищая гипофиз от давлений всей вышележащей массы мозга.

В определенных участках твердой оболочки головного мозга имеются расщепления, выстланные изнутри эндотелием, - это синусы твердой оболочки головного мозга, по которым оттекает венозная кровь. Особенностью синусов является прочность стенок, что объясняет невозможность их спадения. Кроме того, синусы соединяются с наружными венами головы через эмиссарные вены.

Паутинная оболочка головного мозга располагается кнутри от твердой мозговой и отделена от нее субдуральным пространством.

Подпаутинное пространство головного мозга в области большого затылочного отверстия сообщается с подпаутинным пространством спинного мозга.

В определенных местах, вблизи синусов твердой оболочки головного мозга, паутинная оболочка образует своеобразные выросты - грануляция паутинной оболочки. Эти выросты вдаются в синусы твердой оболочки. На внутренней поверхности костей черепа в месте расположения грануляций отмечаются вдавления и ямочки.

Общепризнанным является мнение об участии грануляции паутинной оболочки в обеспечении оттока спинномозговой жидкости в венозное русло.

Мягкая (сосудистая) оболочка - это самая внутренняя из оболочек головного мозга. Она состоит из соединительной ткани, образующей два слоя (внутренний и наружный), между которыми залегают кровеносные сосуды. Оболочка сращена с наружной поверхность мозга и глубоко проникает во все его щели и борозды. Кровеносные сосуды, покидая сосудистую оболочку, направляются в ткань мозга, обеспечивая его питание. В определенных местах сосудистая оболочка проникает в полости желудочков мозга и образует сосудистые сплетения, проецирующие спинномозговую жидкость.

 

 

Министерство образования и науки Республики Казахстан




Дата добавления: 2014-12-15; просмотров: 87 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.032 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав