Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

К прокариотам относят бактерии и сине-зелёные водоросли (цианеи)[7].

Читайте также:
  1. Атмосферное электричество, магнитная буря относятся к … ресурсам
  2. БАКТЕРИИ И ВИРУСЫ
  3. Бактерии и цианобактерии
  4. Бактерии нет
  5. Влияние на бактерии гидростатического давления.
  6. ВОДОРОСЛИ
  7. ВОДОРОСЛИ
  8. Водоросли. Общая характеристика. Важнейшие признаки зеленых, бурых и красных водорослей
  9. Вопрос 38: К какому виду загрязнения относятся -радиация, тепловое, световое электромагнитное, шумовое загрязнение?
  10. ВОПРОС N 6. К главным задачам юридической психологии относят

Тема: Вспомогательные алгоритмы и подпрограммы

 

1. Есть исполнитель «Перевозчик», который перевозит через реку волка, козу и капусту. Напишите алгоритм с обязательным использованием подпрограммы перевоза через реку волка, козы и капусты, если СКИ «Перевозчика» содержит 5 команд: ВЗЯТЬ КОЗУ, ВЗЯТЬ ВОЛКА, ВЗЯТЬ КАПУСТУ, ВЫСАДИТЬ, ПЕРЕПЛЫТЬ. В лодку может поместиться только один предмет или животное. Нельзя оставлять на берегу одних волка с козой и козу с капустой.
ВЗЯТЬ КОЗУ, ПЕРЕПЛЫТЬ, ВЫСАДИТЬ, ПЕРЕПЛЫТЬ, ВЗЯТЬ КАПУСТУ, ПЕРЕПЛЫТЬ, ВЫСАДИТЬ, ВЗЯТЬ КОЗУ, ПЕРЕПЛЫТЬ, ВЫСАДИТЬ, ВЗЯТЬ ВОЛКА, ПЕРЕПЛЫТЬ, ВЫСАДИТЬ, ПЕРЕПЛЫТЬ, ВЗЯТЬ КОЗУ, ПЕРЕПЛЫТЬ, ВЫСАДИТЬ.  
2. Дан алгоритм на языке ГРИС: шаг шаг поворот поворот поворот шаг шаг прыжок прыжок прыжок шаг шаг поворот поворот поворот шаг шаг прыжок прыжок прыжок шаг шаг поворот поворот поворот шаг шаг прыжок прыжок прыжок шаг шаг поворот поворот поворот шаг шаг прыжок прыжок прыжок. Запишите этот же алгоритм с использованием вспомогательных подпрограмм.
НАЧ ДЕЛАЙ КОМАНДА ДЕЛАЙ КОМАНДА ДЕЛАЙ КОМАНДА ДЕЛАЙ КОМАНДА КОН ПРОЦЕДУРА КОМАНДА ШАГ ШАГ ПОВОРОТ ПОВОРОТ ПОВОРОТ ШАГ ШАГ ПРЫЖОК ПРЫЖОК ПРЫЖОК КОНЕЦ ПРОЦЕДУРЫ
3. Используя вспомогательные алгоритмы, запрограммируйте рисование следующих фигур:
 
  НАЧ ПОВОРОТ ПОВОРОТ ПОВОРОТ ПРЫЖОК ДЕЛАЙ СТУПЕНЬ ДЕЛАЙ ЧАСТЬ ДЕЛАЙ СТУПЕНЬ ДЕЛАЙ ЧАСТЬ ПОВОРОТ ШАГ КОН ПРОЦЕДУРА СТУПЕНЬ ПОВОРОТ ШАГ ПОВОРОТ ШАГ ПОВОРОТ ПОВОРОТ ПОВОРОТ ШАГ КОНЕЦ ПРОЦЕДУРЫ ПРОЦЕДУРА ЧАСТЬ ПОВОРОТ ПОВОРОТ ПОВОРОТ ШАГ КОНЕЦ ПРОЦЕДУРЫ    
  НАЧ ПОВОРОТ ПОВОРОТ ПОВОРОТ ПРЫЖОК ДЕЛАЙ ЧАСТЬ ДЕЛАЙ ЧАСТЬ ДЕЛАЙ ЧАСТЬ ДЕЛАЙ ЧАСТЬ КОН ПРОЦЕДУРА ЧАСТЬ ШАГ ПОВОРОТ ШАГ ПОВОРОТ ПОВОРОТ ПОВОРОТ ШАГ ПОВОРОТ КОНЕЦ ПРОЦЕДУРЫ  
  НАЧ ДЕЛАЙ Н ДЕЛАЙ О ДЕЛАЙ С КОН ПРОЦЕДУРА Н ПОВОРОТ ПОВОРОТ ПОВОРОТ ШАГ ШАГ ПОВОРОТ ПОВОРОТ ПРЫЖОК ПОВОРОТ ПОВОРОТ ПОВОРОТ ШАГ ПОВОРОТ ШАГ ПОВОРОТ ПОВОРОТ ПРЫЖОК ШАГ ПОВОРОТ КОНЕЦ ПРОЦЕДУРЫ ПРОЦЕДУРА О ПРЫЖОК ПОВОРОТ ШАГ ШАГ ПОВОРОТ ПОВОРОТ ПОВОРОТ ШАГ ПОВОРОТ ПОВОРОТ ПОВОРОТ ШАГ ШАГ ПОВОРОТ ПОВОРОТ ПОВОРОТ ШАГ ПОВОРОТ ПОВОРОТ ПРЫЖОК КОНЕЦ ПРОЦЕДУРЫ ПРОЦЕДУРА С ПРЫЖОК ПОВОРОТ ШАГ ШАГ ПОВОРОТ ПОВОРОТ ПОВОРОТ ШАГ ПОВОРОТ ПОВОРОТ ПОВОРОТ ПРЫЖОК ПРЫЖОК ПОВОРОТ ПОВОРОТ ПОВОРОТ ШАГ КОНЕЦ ПРОЦЕДУРЫ      

 

 

Помимо организмов с типичной клеточной организацией {эукариотические клетки) существуют относительно простые, доядерные, или прокариотические, клетки — бактерии и синезеленые, у которых отсутствуют оформленное ядро, окруженное ядерной мембраной, и высокоспециализированные внутриклеточные органоиды. Особую форму организации живого представляют вирусы и бактериофаги (фаги). Их строение крайне упрощено: они состоят из ДНК (либо

РНК) и белкового футляра. Свои функции обмена веществ и размножения вирусы и фаги осуществляют только внутри клеток другого организма: вирусы — внутри клеток растений и животных, фаги - в бактериальных клетках как паразиты на, генетическом уровне.

К прокариотам относят бактерии и сине-зелёные водоросли (цианеи)[7].

Наследственный аппарат прокариот представлен одной кольцевой молекулой ДНК, не образующей связей с белками и содержащей по одной копии каждого гена — гаплоидные организмы. В цитоплазме имеется большое количество мелких рибосом; отсутствуют или слабо выражены внутренние мембраны. Ферменты пластического обмена расположены диффузно. Аппарат Гольджи представлен отдельными пузырьками. Ферментные системы энергетического обмена упорядоченно расположены на внутренней поверхности наружной цитоплазматической мембраны. Снаружи клетка окружена толстой клеточной стенкой. Многие прокариоты способны к спорообразованию в неблагоприятных условиях существования; при этом выделяется небольшой участок цитоплазмы содержащий ДНК, и окружается толстой многослойной капсулой. Процессы метаболизма внутри споры практически прекращаются. Попадая в благоприятные условия, спора преобразуется в активную клеточную форму. Размножение прокариот происходит простым делением надвое.

Средняя величина прокариотических клеток 5 мкм. У них нет никаких внутренних мембран, кроме впячиваний плазматической мембраны. Пласты отсутствуют. Вместо клеточного ядра имеется его эквивалент (нуклеоид), лишенный оболочки и состоящий из одной-единственной молекулы ДНК. Кроме того бактерии могут содержать ДНК в форме крошечных плазмид, сходных с внеядерными ДНК эукариот.

В прокариотических клетках, способных к фотосинтезу (сине-зеленые водоросли, зеленые и пурпурные бактерии) имеются различно структурированные крупные впячивания мембраны – тилакоиды, по своей функции соответствующие пластидам эукариот. Эти же тилакоиды или – в бесцветных клетках – более мелкие впячивания мембраны (а иногда даже сама плазматическая мембрана) в функциональном отношении заменяют митохондрии. Другие, сложно дифференцированные впячивания мембраны называют мезасомами; их функция не ясна.

12- Клетки всех типов содержат два основных компонента, тесно связанных между собой, — цитоплазму и ядро. Ядро отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко. Полужидкая цитоплазма заполняет всю клетку и пронизана многочисленными канальцами. Снаружи она покрыта цитоплазматической мембраной. В ней имеются специализированные структуры- органоиды, присутствующие в клетке постоянно, и временные образования — включения. Мембранные органоиды: наружная цитоплазматическая мембрана (HЦM), эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, митохондрии и пластиды. В основе строения всех мембранных органоидов лежит биологическая мембрана. Все мембраны имеют принципиально единый план строения и состоят из двойного слоя фосфолипидов, в который с различных сторон ива разную глубину погружены белковые молекулы. Мембраны органоидов отличаются друг от друга лишь наборами входящих в них белков.Ядро клетки играет основную роль в ее жизнедеятельности, с его удалением клетка прекращает свои функции и гибнет. В большинстве животных клеток одно ядро, но встречаются и многоядерные клетки (печень и мышцы человека, грибы, инфузории, зеленые водоросли). Эритроциты млекопитающих развиваются из клеток-предшественников, содержащих ядро, но зрелые эритроциты утрачивают его и живут недолго.

Ядро окружено двойной мембраной, пронизанной порами, посредством которых оно тесно связано с каналами эндоплазматической сети и цитоплазмой. Внутри ядра находится хроматин — спирализованные участки хромосом. В период деления клетки они превращаются в палочковидные структуры, хорошо различимые в световой микроскоп. Хромосомы — это сложный комплекс белков с

ДНК, называемый нуклеопротеидом[6].

Функции ядра состоят в регуляции всех жизненных отправлений клетки, которую оно осуществляет при помощи ДНК и РНК-материальных носителей наследственной информации. В ходе подготовки к делению клетки ДНК удваивается, в процессе митоза хромосомы расходятся и передаются дочерним клеткам, обеспечивая преемственность наследственной информации у каждого вида организмов.

Кариоплазма — жидкая фаза ядра, в которой в растворенном виде находятся продукты жизнедеятельности ядерных структур.

Ядрышко — обособленная, наиболее плотная часть ядра.

В состав ядрышка входят сложные белки и РНК, свободные или связанные фосфаты калия, магния, кальция, железа, цинка, а также рибосомы. Ядрышко исчезает перед началом деления клетки и вновь формируется в последней фазе деления.

13 -Для клеток растений характерен большой относительный размер (иногда до нескольких сантиметров), наличие жёсткой клеточной оболочки из целлюлозы, присутствие хлоропластов и крупной центральной вакуоли, позволяющей регулировать тургор. Во время деления перегородка образуется за счёт слияния многочисленных пузырьков (фрагмопласт). Сперматозоиды растений дву- (у мохообразных и плауновидных) или многожгутиковые (у остальных папоротникообразных, саговниковых и гинкговых), причём ультраструктура жгутикового аппарата очень похожа на таковую в жгутиковых клетках харовых водорослей (отдел Зелёные водоросли).

Клетки растений объединяются в ткани. Ткани растений характеризуются практически полным отсутствием межклеточного вещества, большим количеством мёртвых клеток (некоторые ткани, такие как склеренхима и пробка, состоят почти исключительно из мёртвых клеток), а также тем, что, в отличие от животных, ткань растения может состоять из разных типов клеток (например, ксилема состоит из водопроводящих элементов, волокон древесины и древесинной паренхимы).

Большинство растений характеризуется значительным расчленением тела. Существуют несколько типов организации тела растений: талломный, при котором отдельные органы не выделяются и тело представляет собой зелёную пластину (некоторые мохообразные, заростки папоротников), листостебельный, при котором тело представляет собой побег с листьями (корни отсутствуют; большинство мохообразных), и корнепобеговый, когда тело делится на корневую и побеговую систему. Побег большинства растений состоит из осевой части (стебля) и боковых фотосинтезирующих органов (листьев), которые могут возникать либо как выросты внешних тканей стебля (у мохообразных), либо как следствие слияния укороченных боковых ветвей (у папоротникообразных). Зачаток побега принято считать особым органом — почкой.[4]

Размножение

Для растений характерны два вида размножения: половое и бесполое. Для высших сосудистых растений единственной формой полового процесса является оогамия. Из форм бесполого размножении широко распространено вегетативное размножение.

Кроме вегетативных, растения имеют специализированные генеративные органы, строение которых связано с протеканием жизненного цикла. В жизненном цикле растений чередуется половое, гаплоидное поколение (гаметофит) и бесполое, диплоидное поколение (спорофит). На гаметофите образуются половые органы — мужские антеридии и женские архегонии (отсутствуют у некоторых гнетовых и у покрытосеменных). Сперматозоиды (их нет у хвойных, гнетовых и покрытосеменных) оплодотворяют находящуюся в архегонии яйцеклетку, в результате образуется диплоидная зигота. Зигота формирует зародыш, который постепенно развивается в спорофит. На спорофите развиваются спорангии (часто на специализированных спороносных листьях, или спорофиллах). В спорангиях происходит мейоз, и образуются гаплоидные споры. У разноспоровых растений эти споры двух типов: мужские (из них развиваются гаметофиты только с антеридиями) и женские (из них развиваются гаметофиты, несущие только архегонии); у равноспоровых споры одинаковые. Из споры развивается гаметофит, и всё начинается сначала. Такой жизненный цикл имеют Мохообразные и Папоротникообразные, причём у первой группы в жизненном цикле доминирует гаметофит, а у второй — спорофит. У семенных растений картина усложняется за счет того, что женский (несущий архегонии) гаметофит развивается прямо на материнском спорофите, а мужской гаметофит (пыльцевое зерно) должен быть доставлен туда в процессе опыления. Спорофиллы у семенных растений часто сложно устроены и объединяются в так называемые стробилы, а у покрытосеменных растений — в цветки, которые могут, в свою очередь, объединяться в соцветия. Кроме того, у семенных растений возникает специализированная, состоящая из нескольких генотипов структура — семя, которое можно условно отнести к генеративным органам. У покрытосеменных растений цветок после опыления созревает и формирует плод.[4]

14- У животных много общих черт с представителями других царств. Например, животные и растения имеют клеточное строение, сходный химический состав (углеводы, липиды, белки, нуклеиновые кислоты, АТФ и др.), многие общие свойства (обмен веществ, наследственностъ, изменчивость, раздражимость).

Однако животным свойственны особые черты организации, которые отличают их от растений. Наиболее глубокое различие заключается в характере питания этих организмов: растения — автотрофы, а животные — гетеротрофы. Подавляющее большинство животных — подвижны, им присущи сложные поведенческие реакции, отсутствующие у растений. Однако среди них есть прикрепленные и малоподвижные формы, распространение которых осуществляется подвижными личинками.

Рост большинства животных имеет ограничение и осуществляется преимущественно только в определенный период их развития. Лишь немногие из них (некоторые раки, крокодилы, черепахи) растут на протяжении всей жизни.

Клетки животных, в отличие от растений, не имеют клеточной стенки, пластид, вакуолей. Запасной углевод— гликоген, а конечные продукты азотистого обмена —аммиак, мочевина, мочевая кислота.

Мир животных велик и разнообразен. К настоящему времени описано более 1,5 млн. видов животных, приспособленных к жизни на поверхности суши, почве, пресной и морской воде, в воздушной среде.

Значение животных а природе огромно. Как потребители готового органического вещества, т. е. консументы, они являются важнейшими звеньями цепей и сетей питания. В результате процессов жизнедеятельности и подвижности животные потребляют, перераспределяют в биосфере огромные количества вещества и энергии и благодаря этому ускоряют течение биологического круговорота веществ, причем колесо биологического круговорота «крутится» тем быстрее, чем меньше размеры животного.

15- прокариоты и эукариоты

16 -Световая микроскопия обеспечивает увеличение до 2-3 тысяч раз, цветное и подвижное изображение живого объекта, возможность микрокиносъемки и длительного наблюдения одного и того же объекта, оценку его динамики и химизма.

Основными характеристиками любого микроскопа являются разрешающая способность и контраст. Разрешающая способность - это минимальное расстояние, на котором находятся две точки, демонстрируемые микроскопом раздельно. Разрешение человеческого глаза в режиме наилучшего видения равно 0.2 мм.

Контраст изображения - это различие яркостей изображения и фона. Если это различие составляет менее 3 - 4 %, то его невозможно уловить ни глазом, ни фотопластинкой; тогда изображение останется невидимым, даже если микроскоп разрешает его детали. На контраст влияют как свойства объекта, которые изменяют световой поток по сравнению с фоном, так и способности оптики уловить возникающие различия в свойствах луча.

Возможности светового микроскопа ограничены волновой природой света. Физические свойства света - цвет (длина волны), яркость (амплитуда волны), фаза, плотность и направление распространения волны изменяются в зависимости от свойств объекта. Эти различия и используются в современных микроскопах для создания контраста.

Увеличение микроскопа определяется как произведение увеличения объектива на увеличение окуляра. У типичных исследовательских микроскопов увеличение окуляра равно 10, а увеличение объективов – 10, 45 и 100. Соответственно, увеличение такого микроскопа составляет от 100 до 1000. Некоторые из микроскопов имеют увеличение до 2000. Еще более высокое увеличение не имеет смысла, так как при этом разрешающая способность не улучшается. Напротив, качество изображения ухудшается.

Числовая апертура используется для выражения разрешающей способности оптической системы или светосилы объектива. Светосила объектива -интенсивность света, приходящаяся на единицу площади изображения, приблизительно равна квадрату NA. Величина NA составляет примерно 0,95 для хорошего объектива. Микроскоп обычно рассчитывают таким образом, чтобы его полное увеличение составляло около 1000 NA. Если между объективом и образцом ввести жидкость (масло или, что бывает реже, дистиллированную воду), то получится «иммерсионный» объектив с величиной NA, достигающей 1,4, и с соответствующим улучшением разрешения.

17 -Просвечивающая электронная микроскопия

ПЭМ является наиболее универсальным классическим методом исследования структурных дефектов кристаллов, используется непосредственно для анализа морфологических особенностей, ориентации дефектов относительно решетки матрицы, определения их размеров. Для работы на просвечивающих электронных микроскопах требуются специально приготовленные тонкие препараты – реплики или фольги, прозрачные для электронов. Наиболее распространены электронные микроскопы с ускоряющим напряжением 100 и 200, 300 и 400 кВ, при этом исследуемые образцы должны иметь различную толщину в зависимости от величины ускоряющего напряжения (для 100 кВ в случае кремния оптимальная толщина 0,3-0,4 мкм, для 200 кВ - от 0,6-0,8мкм до 1мкм). Реплики используются для наблюдения микрорельефа, фактуры поверхности исследуемого образца. Сама реплика – это тонкая пленка какого-то вещества, на которой получают отпечаток микрорельефа поверхности. Это осуществляется, например, путем напыления угольной пленки или нанесения пленки лака или желатина. Метод реплик позволяет получать информацию о структуре поверхности образцов. Фольги – тонкие пленки, которые получают из массивных образцов, причем утонение образца необходимо вести таким образом, чтобы не внести в исследуемую область дополнительных нарушений. Утоненный образец, как и снятую реплику, помещают на специальную сетку с крупными отверстиями и размещают в колонне микроскопа. Именно на фольгах ведутся исследования дефектообразования в кристаллах.

Длина волны электронов с энергией 100 кэВ примерно равна 0,004 нм, а разрешающая способность обычного просвечивающего электронного микроскопа составляет ~0,15 нм. В дефектной области наблюдается изменение интенсивности контраста, поскольку в области дефекта или искажена решетка, или наличествует поле упругих напряжений вокруг дислокаций и выделений. При малой деформации решетки матрицы дефект может не выявляться. Кроме того, поскольку просматривается маленький участок при наблюдении дефектов с плотностью менее 108см-3, для обнаружения дефекта требуется просмотр большого количества фольг.

18- Сканирующая электронная микроскопия (СЭМ)

При растровой электронной микроскопии (РЭМ) поверхность образца сканируется точно сфокусированным пучком электронов. Облучение электронами приводит к излучению вторичных электронов, обратному рассеянию электронов высокой энергии и возникновению рентгеновских лучей, характеристики которых зависят от элементов образца.

Вторичные электроны низкой энергии создаются в верхнем слое образца толщиной в несколько нанометров Полученные изображения отражают топографию поверхности с разрешением в несколько нанометров. С другой стороны, интенсивность рассеянных первичных электронов определяется средним атомным числом материала образца. Создание соответствующих изображений позволяет получить информацию о распределении различных материалов (контрастные изображения материалов) В данном режиме можно получать информацию об образце с разрешением до 1 нанометра. Кроме того, рентгеновское излучение, характеристики которого зависят от элементов образца, применяется для определения химических характеристик поверхности. Длина волны и энергия рентгеновских лучей может быть определена при помощи соответствующих датчиков. На основе значений интенсивности электронов можно получить количественные данные о составе и распределении элементов. Глубина образования рентгеновских лучей зависит от материала и используемой энергии первичных электронов. При использовании стандартной первичной энергии, равной от 10 до 20 кэВ рентгеновские лучи возникают на глубине в несколько нанометров.

Образцы для растровой электронной микроскопии и энергорассеивающего рентгеновского анализа должны быть совместимы с условиями вакуума. Современные инструменты могут использоваться в условиях давления, равного приблизительно 1мбар (растровая электронная микроскопия воздействия внешней среды)

19- Цель гистохимии как раздела гистологии и цитологии — микроскопическая локализация химических соединений в клетке и тканях при сохранении их структуры, а также изучение механизмов и специфичности реакций, используемых с этой целью.

Результат гистохимического анализа в равной мере зависит от качества проведения гистохимической реакции и подготовки материала. Процесс подготовки включает взятие образца ткани, фиксацию, промывание, обезвоживание, заливку в парафин или синтетические смолы и приготовление срезов, мазков или отпечатков. На каждом из этих этапов важно правильно выбрать конкретную методику, обеспечивающую наилучшую сохранность исследуемых веществ при одновременной сохранности, насколько это возможно, прижизненной структуры клеток и тканей.

Для последующего гистохимического анализа наиболее важен выбор метода фиксации.

20- для того чтобы изучить состав и функции тех или иных клеток, применяют метод дифференциального центрифугирования. Он основан на том, что различные клеточные органеллы и включения имеют различную плотность. При очень быстром вращении в специальном приборе - ультрацентрифуге - органеллы тонко измельченных клеток выпадают в осадок из раствора, располагаясь слоями в соответствии со своей плотностью: более плотные компоненты осаждаются при более низких скоростях центрифугирования, а менее плотные - при более высоких скоростях. Эти слои разделяют и изучают отдельно

21- Хроматогра́фия (от др.-греч. χρῶμα — цвет) — динамический сорбционный метод разделения и анализа смесей веществ, а также изучения физико-химических свойств веществ. Основан на распределении веществ между двумя фазами — неподвижной (твердая фаза или жидкость, связанная на инертном носителе) и подвижной (газовая или жидкая фаза, элюент). Название метода связано с первыми экспериментами по хроматографии, в ходе которых разработчик метода Михаил Цвет разделял ярко окрашенные растительные пигменты.

22- Электрофорез - это один из видов направленных движений заряженных частиц коллоидных систем в жидкой среде под действием внешнего электрического поля.

Электрофорез- направленное движение коллоидных частиц или макроионов под действием внешнего электрического поля. Электрофорез был ещё открыт Ф.Ф. Рейссом в 1807 и считается одним из важнейших разновидностей электрокинетических явлений. Скорость и движущихся частиц приближённо связана с напряжённостью электрического поля Е уравнением Смолуховского.

С помощью электрофореза удаётся покрывать мелкими частицами поверхность, обеспечивая глубокое проникновение в углубления и поры. Различают две разновидности электрофореза: катафорез — когда обрабатываемая поверхность имеет отрицательный электрический заряд (то есть подключена к отрицательному контакту источника тока) и анафорез — когда заряд поверхности положительный.

Электрофорез применяют в физиотерапии, для окраски автомобилей, в химической промышленности, для осаждения дымов и туманов, для изучения состава растворов и др. Электрофорез является одним из наиболее важных методов для разделения и анализа компонентов веществ в химии, биохимии и молекулярной биологии.

23- КУЛЬТУ́РА ТКА́НИ (эксплантация), метод длительного сохранения и выращивания в специальных питательных средах клеток, тканей, небольших органов или их частей, выделенных из организма человека, животных и растений. Основан на методах выращивания культуры микроорганизмов, обеспечивающих асептику, питание, газообмен и удаление продуктов обмена культивируемых объектов. Одно из преимуществ метода тканевых культур — возможность наблюдения за жизнедеятельностью клеток с помощью микроскопа.

24- Электрофизиологические Методы

Электрофизиологические методы - методы анализа - активности органических систем на основе регистрации биопотенциалов, изменение которых может происходить спонтанно или в ответ на внешний раздражитель. Биотоки мозга анализируются при помощи электроэнцефалограммы - (ЭЭГ) и вызванных потенциалов - (ВП), мышц - при помощи электромиограммы - (ЭМГ), кожи - при помощи кожно - гальванической реакции - (КГР), сердца - электрокардиограммы (ЭКГ).

25-26 Строение клетки прокариот

Основной генетический материал прокариот (от греч. про – до и карион – ядро) находится в цитоплазме в виде кольцевой молекулы ДНК. Эта молекула (нуклеоид) не окружена ядерной оболочкой, характерной для эукариот, и прикрепляется к плазматической мембране (рис.1). Таким образом, прокариоты не имеют оформленного ядра. Кроме нуклеоида в прокариотической клетке часто встречается небольшая кольцевая молекула ДНК, называемая плазмидой. Плазмиды могут перемещаться из одной клетки в другую и встраиваться в основную молекулу ДНК.

Некоторые прокариоты имеют выросты плазматической мембраны: мезосомы, ламеллярные тилакоиды, хроматофоры. В них сосредоточены ферменты, участвующие в фотосинтезе и в процессах дыхания. Кроме того, мезосомы ассоциированы с синтезом ДНК и секрецией белка.

Клетки прокариот имеют небольшие размеры, их диаметр составляет 0, 3–5 мкм. С наружной стороны плазматической мембраны всех прокариот (за исключением микоплазм) находится клеточная стенка. Она состоит из комплексов белков и олигосахаридов, уложенных слоями, защищает клетку и поддерживает ее форму. От плазматической мембраны она отделена небольшим межмембранным пространством.

В цитоплазме прокариот обнаруживаются только немембранные органоиды рибосомы. По структуре рибосомы прокариот и эукариот сходны, однако рибосомы прокариот имеют меньшие размеры и не прикрепляются к мембране, а располагаются прямо в цитоплазме.

Рис. 2. Строение клеток эукариот

Многие прокариоты подвижны и могут плавать или скользить с помощью жгутиков.

Размножаются прокариоты обычно путем деления надвое (бинарным). Делению предшествует очень короткая стадия удвоения, или репликации, хромосом. Так что прокариоты – гаплоидные организмы.

К прокариотам относятся бактерии и синезеленые водоросли, или цианобактерии. Прокариоты появились на Земле около 3, 5 млрд лет назад и были, вероятно, первой клеточной формой жизни, дав начало современным прокариотам и эукариотам.

Эукариоты (от греч. эу – истинный, карион – ядро) в отличие от прокариот, имеют оформленное ядро, окруженное ядерной оболочкой – двуслойной мембраной. Молекулы ДНК, обнаруживаемые в ядре, незамкнуты (линейные молекулы). Кроме ядра часть генетической информации содержится в ДНК митохондрий и хлоропластов. Эукариоты появились на Земле примерно 1, 5 млрд лет назад.

В отличие от прокариот, представленных одиночными организмами и колониальными формами, эукариоты могут быть одноклеточными (например, амеба), колониальными (вольвокс) и многоклеточными организмами. Их делят на три больших царства: Животные, Растения и Грибы.

Диаметр клеток эукариот составляет 5–80 мкм. Как и прокариотические клетки, клетки эукариот окружены плазматической мембраной, состоящей из белков и липидов. Эта мембрана работает как селективный барьер, проницаемый для одних соединений и непроницаемый для других. Снаружи от плазматической мембраны расположена прочная клеточная стенка, которая у растений состоит главным образом из волокон целлюлозы, а у грибов – из хитина. Основная функция клеточной стенки – обеспечение постоянной формы клеток. Поскольку плазматическая мембрана проницаема для воды, а клетки растений и грибов обычно соприкасаются с растворами меньшей ионной силы, чем ионная сила раствора внутри клетки, вода будет поступать внутрь клеток. За счет этого объем клеток будет увеличиваться, плазматическая мембрана начнет растягиваться и может разорваться. Клеточная стенка препятствует увеличению объема и разрушению клетки.

У животных клеточная стенка отсутствует, но наружный слой плазматической мембраны обогащен углеводными компонентами. Этот наружный слой плазматической мембраны клеток животных называют гликокаликсом. Клетки многоклеточных животных не нуждаются в прочной клеточной стенке, поскольку есть другие механизмы, обеспечивающие регуляцию клеточного объема. Так как клетки многоклеточных животных и одноклеточные организмы, живущие в море, находятся в среде, в которой суммарная концентрация ионов близка к внутриклеточной концентрации ионов, клетки не набухают и не лопаются. Одноклеточные животные, живущие в пресной воде (амеба, инфузория туфелька), имеют сократительные вакуоли, которые постоянно выводят наружу поступающую внутрь клетки воду.

Структурные компоненты эукариотической клетки

Внутри клетки под плазматической мембраной находятся цитоплазма. Основное вещество цитоплазмы (гиалоплазма) представляет собой концентрированный раствор неорганических и органических соединений, главными компонентами которого являются белки. Это коллоидная система, которая может переходить из жидкого в гелеобразное состояние и обратно. Значительная часть белков цитоплазмы является ферментами, осуществляющими различные химические реакции. В гиалоплазме располагаются органоиды, выполняющие в клетке различные функции. Органоиды могут быть мембранными (ядро, аппарат Гольджи, эндоплазматический ретикулум, лизосомы, митохондрии, хлоропласты) и немембранными (клеточный центр, рибосомы, цитоскелет).

Мембранные органоиды

Основным компонентом мембранных органоидов является мембрана. Биологические мембраны построены по общему принципу, но химический состав мембран разных органоидов различен. Все клеточные мембраны – это тонкие пленки (толщиной 7–10 нм), основу которых составляет двойной слой липидов (бислой), расположенных так, что заряженные гидрофильные части молекул соприкасаются со средой, а гидрофобные остатки жирных кислот каждого монослоя направлены внутрь мембраны и соприкасаются друг с другом (рис. 3). В бислой липидов встроены молекулы белков (интегральные белки мембраны) таким образом, что гидрофобные части молекулы белка соприкасаются с жирнокислотными остатками молекул липидов, а гидрофильные части экспонированы в окружающую среду. Кроме этого часть растворимых (немембранных белков) соединяется с мембраной в основном за счет ионных взаимодействий (периферические белки мембраны). Ко многим белкам и липидам в составе мембран присоединены также углеводные фрагменты. Таким образом, биологические мембраны – это липидные пленки, в которые встроены интегральные белки.

27- цитоплазматическая мембрана, рибосом

28- ядерная лболочка, митохондрии, эпс, лизосомяы,

29- хлоропласты

30- прокариоты

31- вирусы

32- эукариоты?

33- прокариоты

34- эукариоты

35- Клетки прокариот, к которым относятся бактерии, в отличие от эукариот, имеют относительно простое строение. В прокариотической клетке нет организованного ядра, в ней содержится только одна хромосома, которая не отделена от остальной части клетки мембраной, а лежит непосредственно в цитоплазме. Однако в ней также записана вся наследственная информация бактериальной клетки. (в общем определяют по ядру)

36- прокариоты

37- центрефугирование

38- метод электронной микроскопии

39- метод хроматографии

40-?

41- раздражимость????или иммунитет

42- гомеостаз

43-?

44-) У прокариот из органоидов имеются только рибосомы (мелкие, 70S), а у эукариот кроме рибосом (крупных, 80S)

45- прокариоты

46- Рентгеноструктурный анализ

метод исследования кристаллической структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения.

P. a. применяется для изучения веществ твёрдых и жидких, кристаллич. и аморфных, однако наиболее широко и успешно используется для изучения кристаллич. объектов.

Kаждое кристаллич. вещество - минерал или его синтетич. аналог, каждое хим. соединение имеет свою индивидуальную кристаллич. структуру, определяющую индивидуальность физ.-хим. свойств вещества. Oпределение структурных характеристик: элементарной ячейки, симметрии, размеров, координат атомов в ней, межатомных расстояний, межплоскостных расстояний - осн. задача P. a. Aнализ основан на определении углов отражения и интенсивности рассеянного веществом рентгеновского излучения, определяемого плотностью и характером заселения атомных плоскостей и атомными номерами входящих в состав вещества хим. элементов. Kак правило, расшифровка структуры проводится по рентгенограммам монокристаллов, однако можно определять и по порошковым дифракционным картинам. Pентгенограммы монокристаллов фиксируются на фотоплёнку в камерах Лауэ (при отборке совершенных кристаллов и юстировке), в камерах вращения, качания или развёрток (КФОР, рентген-гониометры). Oптимальной является работа на монокристалльных рентген-дифрактометрах при регистрации излучения детекторами (счётчиками разл. типа). Oбработка экспериментальных данных проводится c помощью ЭВМ.

 




Дата добавления: 2014-12-15; просмотров: 199 | Поможем написать вашу работу | Нарушение авторских прав

<== предыдущая лекция | следующая лекция ==>
Домашнее задание №20| Семинар 2.

lektsii.net - Лекции.Нет - 2014-2025 год. (0.018 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав