Читайте также:
|
|
Электрические сигналы как носители информации могут быть аналоговыми или дискретными, их спектр может содержать частоты от десятков Гц до десятков ГГц.
Наиболее широко применяются сигналы, ширина спектра которых соответствует ширине спектра стандартного телефонного канала. Такие сигналы передают речевую информацию с помощью телефонных аппаратов и распространяются по направляющим линиям связи, связывающих абонентов как внутри организации, так внутри населенного пункта, города, страны, земного шара в целом.
В общем случае направляющие линии связи создаются для передачи сигналов в заданном направлении с должным качеством и надежностью. Способы и средства передачи электрических сигналов по проводам рассматриваются прикладной областью электросвязи, называемой проводной связью.
Различают воздушные и кабельные проводные линии связи. Воздушное линии связи относятся к симметричным цепям, отличительной особенностью которых является наличие двух проводников с одинаковыми электрическими свойствами.
В зависимости от типа несущих конструкций они делятся на столбовые и стоечные. Столбовыми называются линии, несущими конструкциями которых являются деревянные или железобетонные опоры. Опорами столбовых линий служат металлические стойки, установленные, например, на крышах зданий. Для изоляции проводов воздушных линий друг от друга и относительно земли их укрепляют на фарфоровых изоляторах.
Более широко применяются кабельные линии связи. Кабельные линии связи получили доминирующее развитие при организации объектовой, городской и междугородной телефонной связи. Они составляют 65% телефонных линий России. Кабели бывают симметричными и коаксиальными.
Если обе жилы цепи, образованного кабелем, выполнены из провода одинакового диаметра, имеют одинаковую изоляцию и расположены так, что между ними можно провести плоскость симметрии, то кабель называется симметричным. Если же оба проводника цепи выполнены в форме соосных цилиндров, в поперечном сечении имеют форму концентрических окружностей, то такой кабель – коаксиальный.
Симметричные кабели представляют собой проводники (жилы) с нанесенными на них одним или несколькими слоями изолятора из диэлектрических материалов. Несколько жил, объединенных единым изолятором в виде ленты, образуют ленточные кабели или полосковые линии. Известные конструкции симметричных кабелей содержат от 1´2 до 2400´2 жил под общей защитной оболочкой.
В коаксиальном кабеле один проводник концентрически расположен внутри другого проводника, имеющего форму полого цилиндра. Внутренний проводник изолируется от внешнего с помощью различных изоляционных материалов и конструкций. Для изоляции коаксиальных пар кабеля применяется полиэтилен, фторлан (фторопласт), Полипропилен, резина, неорганическая изоляция. Для обеспечения гибкости кабеля внешний проводник выполняется из медной или железной сетки, а для защиты от внешних воздействий он покрывается слоем изолятора (полихлорвинила)
Основными параметрами проводных линий связи являются ширина пропускаемого ими спектра частот и собственное затухания Zc=10lgPвх/Рвых, где Рвх и Рвых – мощность сигнала на входе и выходе цепи соответственно.
Если сопротивление проводников на низких частотах (в диапазоне 0-100 кГц) определяется удельным сопротивлением материала и площадью поперечного сечения проводника, то на более высоких частотах начинается сказываться влияние поверхностного эффекта. Сущность его заключается в том, что переменное магнитное поле, возникающее при протекании по проводнику тока, создает внутри проводника вихревые токи, В результате этого плотность основного тока перераспределяется по сечению проводника (жилы) – уменьшается в центре и возрастает на периферии. Глубина проникновения (в мм) тока в медную жилу θ=67/√f, где f – частота колебаний в Гц. На частоте f=60 кГц глубина проникновения составляет приблизительно 0.3 мм, а на частоте 250 кГц – на порядок меньше, всего около 0.03 мм. Следовательно, ток с этой частотой распространяется по гипотетической тонкой медной трубке с существенно меньшей площадью сечения и, соответственно, большим сопротивлением.
На величину затухания линии влияют также электрические характеристики диэлектрика, наносимого на металлические провода. За счет их удается расширить полосу пропускания линии. При передаче по воздушным линиям со стальными проводами ширина пропускания составляет около 25 кГц, с мерными проводами – до 150 кГц, по симметричным кабелям – до 600 кГц. Расширению спектра частот, передаваемых по симметричным цепям, препятствуют возрастающие наводки. Например, удовлетворительным для телефонных линий считается значение переходного затухание порядка 60-70 дБ.
В коаксиальном кабеле электрическое поле замыкается между внутренним и внешним проводниками, поэтому внешнее электрическое поле отсутствует. Кабель не имеет также внешнего магнитного и электромагнитного полей, что и обусловливает его основные преимущества перед симметричными. Вследствие поверхностного эффекта ток при повышении частоты оттесняется во внутреннем проводнике к его наружной поверхности, а во внешнем, наоборот к внутренней. Стандартная коаксиальная пара 1.2/4.4 (с диаметрами внутреннего и внешнего проводников – 1.2 и 4.4 мм соответственно) обеспечивают передачу 900-960 телефонных каналов на расстояние до 9 км или 3600 каналов на расстояние 1.5 км При увеличении диаметров проводников до 2.6/9.5 число телефонных каналов для длины участка 1.5 км возрастает до 10800. Ширина частотного диапазона такого кабеля достигает 60 МГц [116].
Для повышения частотного диапазона требуется дальнейшее увеличение диаметра коаксиального кабеля. Например, кабель РК 50-17-51 с наружным диаметром изоляции (внешнего проводника) 17.3 мм имеет номинальный коэффициент затухания 0.012, 0.035 и 0.05 дБ/м на частотах 200, 450 и 900 Мгц соответственно.
В атмосфере и безвоздушном пространстве радиоэлектронного канала утечки информации ее носителями являются поля: в ближней зоне источника поля – электрическое и магнитное, в дальней зоне – электромагнитное.
Электромагнитное поле представляет форму движения материи в виде взаимосвязанных колебаний электрического и магнитного полей. Электромагнитное поле возникает при протекании по проводам источника радиосигнала электрического тока переменной частоты и распространяется с конечной скоростью в окружающем пространстве. Векторы напряженности электрического и магнитного полей взаимно перпендикулярны и перпендикулярны направлению распространения электромагнитной волны. Электромагнитная волна характеризуется частотой колебания, мощностью и поляризацией. По частоте электромагнитные волны классифицируются в соответствии с регламентом радиосвязи, утвержденным на Всемирной административной конференции в Женеве в 1979 г. (табл. 4.3).
Таблица 4.3.
Диапазон длин волн | Наименование волн | Обозначение и наименование частот | Диапазон частот |
>100 км | – | ELF – чрезвычайно низкие | Доли Гц-3 кГц |
10-100 км | Мириаметровые | VLF(OHЧ) – очень низкие | 3-30 кГц |
1-10 км | Километровые (длинные) | LF(HЧ) – низкие | 30-300 кГц |
100-1000 м | Гектаметровые (средние) | МF(СЧ) – средние | 300-3000 кГц |
10-100 м | Декаметровые (короткие) | HF(BЧ) – высокие | 3-30 МГц |
1-10 м | Метровые | (ОВЧ) – очень высокие | 30-300 МГц |
10-100 см | Дециметровые | UHF(УВЧ) – ультравысокие | 300-3000 МГц |
1-10 см | Сантиметровые | SHF(CBЧ) – сверхвысокие | 3-30 ГГц |
1-10 мм | Миллиметровые | EHF(KBЧ) – крайне высокие | 30-300 ГГЦ |
0.1-1 мм | Децимиллиметровые | ГВЧ – гипервысокие | 300-3000 ГГц |
Примечание. Электромагнитные волны длиной менее 10 м называют также ультракороткими (УКВ).
Дата добавления: 2014-12-18; просмотров: 99 | Поможем написать вашу работу | Нарушение авторских прав |