Читайте также: |
|
ü Почему, кто-то силен с рождения, а кто-то вынослив?
Но вот еще один важный момент. Оказывается, волокна в каждой мышце бывают двух типов – быстрые и медленные.
Медленно с окращающиеся волокна еще называют красными, потому что в них находится много красного мышечного пигмента миоглобина. Эти волокна отличаются хорошей выносливостью.
Быстрые волокна, по сравнению с красными волокнами, обладают небольшим содержанием миоглобина, поэтому их называют белыми волокнами. Они отличаются высокой скоростью сокращений и позволяют развивать большую силу.
Да вы и сами видели такие волокна у курицы – ножки красные, грудка белая, Воот! Это оно самое и есть, только у человека эти волокна перемешаны и присутствуют оба типа в одной мышце.
Красные (медленные) волокна используют аэробный (с участием кислорода) путь получения энергии, поэтому к ним подходит больше капилляров, для лучшего снабжения их кислородом. Благодаря такому вот способу преобразования энергии, красные волокна являются низко утомляемыми и способны поддерживать относительно небольшое, но длительное напряжение. В основном, именно они важны для бегунов на длинные дистанции, и в других видах спорта, где требуется выносливость. Значит, и для всех желающих похудеть они имеют так же решающую роль.
Быстрые (белые) волокна, получают энергию для своего сокращения без участия кислорода (анаэробно). Такой способ получения энергии (его еще называют гликолизом), позволяет белым волокнам развивать большую быстроту, силу и мощность. Но за высокую скорость получения энергии белым волокнам приходится платить быстрой утомляемостью, так как гликолиз приводит к образованию молочной кислоты, а ее накопление вызывает усталость мышц и в итоге останавливает их работу. Ну и, конечно же, без белых волокон ну никак не могут обойтись метатели, штангисты, бегуны на короткие дистанции….. в общем те, кому требуются сила и скорость.
Теперь придется вас немного запутать, просто потому, что по-другому ну никак не получается. Дело в том, что существует еще один, промежуточный тип волокон, который так же относиться к белым волокнам, но использует как и красные, преимущественно аэробный путь получения энергии и совмещает в себе свойства белых и красных волокон. Еще раз напомню, он относится к белым волокнам.
В среднем человек имеет примерно 40% медленных (красных) и 60 % быстрых (белых) волокон. Но это средняя величина по всей скелетной мускулатуре, что-то наподобие средней температуры по больнице.
На самом деле, мышцы выполняют различные функции и поэтому могут значительно отличаться друг от друга составом волокон. Ну, например, мышцы, выполняющие большую статическую работу (камбаловидная, она же икроножная мышца), часто обладают большим количеством медленных волокон, а мышцы, совершающие в основном динамические движения (бицепс), имеют большое количество быстрых волокон.
Интересно то, что соотношение быстрых и медленных волокон у нас неизменно, не зависит от тренированности и определяется на генетическом уровне. Именно поэтому существует предрасположенность к тем или иным видам спорта.
Теперь давайте-ка посмотрим, как же все это работает.
ü Когда человек больше худеет на беговой дорожке или на тренажерах?
Когда требуется легкое усилие, например, при ходьбе или беге трусцой, задействуются медленные волокна. Причем ввиду большой выносливости этих волокон такая работа может продолжаться очень долго. Но по мере увеличения нагрузки организму приходится вовлекать в работу все больше и больше таких волокон, причем те, что уже работали, увеличивают силу сокращения. Если еще увеличивать нагрузку, то в работу включатся так же быстрые окислительные волокна (помните промежуточные?). При нагрузке достигающей 20%-25% от максимальной, например, во время подъема в гору или финального рывка, уже и силы окислительных волокон становится недостаточно, и вот тут как раз включатся в работу быстрые - гликолитические волокна. Как уже говорилось, быстрые волокна значительно повышают силу сокращения мышцы, но, так же быстро и утомляются, и поэтому в работу будет вовлекаться все большее их количество. В итоге, если уровень нагрузки не уменьшится, движение в скором времени придется остановить из-за усталости.
Вот и получается, что при длительной нагрузке в умеренном темпе, работают в основном медленные (красные) волокна и именно благодаря их аэробному способу получения энергии и сжигаются жиры в нашем организме.
Вот вам и ответ на вопрос, почему мы худеем на беговой дорожке и практически не худеем при занятиях на тренажерах. Все просто - используются разные различные мышечные волокна, а значит и разные источники энергии.
Вообще, мышцы - самый экономичный в мире двигатель. Растут и увеличивают свою силу, мышцы исключительно за счет увеличения толщины мышечных волокон, количество же мышечных волокон не увеличивается. Поэтому, самый последний заморыш и Геракл по числу мышечных волокон не имеют друг перед другом никакого преимущества. Кстати, процесс увеличения толщины мышечных волокон называется гипертрофия, а уменьшения - атрофия.
При тренировках, имеющих целью увеличение силы, мышцы прибавляются в объеме значительно больше, чем при тренировках на выносливость, потому что сила зависит от поперечного сечения мышечных волокон, а выносливость - от добавочного количества капилляров, окружающих эти волокна. Соответственно, чем больше капилляров, тем больше кислорода с кровью будет доставлено к работающим мышам.
В соответствии с делением мышечных волокон и мотонейронов на медленные и быстрые принято выделять три типа ДЕ.
Медленные, неутомляемые двигательные единицы (ДЕ I) состоят из
мотонейронов малого размера, имеющих низкий порог возбудимости, высокое
входное сопротивление. При деполяризации мелких нейронов возникает продолжительный разряд с незначительной адаптацией. Мотонейроны с такими свойствами называются тоническими. Небольшой диаметр аксона (до 5 -7 мкм) объясняет и невысокую, по сравнению с более толстыми, скорость проведения возбуждения. Мышечные волокна, входящие в ДЕ этого типа, относятся к красным волокнам (тип I), имеющим наименьший диаметр, скорость их сокращения минимальна, максимальное напряжение слабее, чем белых волокон (тип II), они характеризуются малой утомляемостью.
Быстрые, легко утомляемые двигательные единицы (тип ДЕ II В) сформированы из крупных (до 100 мкм в поперечнике) мотонейронов, имеющих высокий порог возбуждения, диаметр их аксонов наибольший (до 15 мкм), скорость проведения возбуждения достигает 120 м/с, высокочастотная импульсация кратковременна и быстро спадает, т.к. происходит быстрая адаптация. Крупные мотонейроны относятся к нейронам фазического типа. Входящие в эти ДЕ мышечные волокна относятся ко II типу (белые волокна). Они способны развивать значительное напряжение, но быстро утомляются. Как правило, ДЕ этого типа содержат большое число мышечных волокон (большие ДЕ). Гладкий тетанус в них наблюдается при высокой частоте импульсации (порядка 50 имп/с), в отличие от ДЕ I, где это достигается при частоте до 20 имп/с.
Третий тип двигательных единиц - тип ДЕ II-A относится к промежуточному типу. В их состав входят как быстрые, так и медленные мышечные волокна. Мотонейроны - среднего калибра.
Скелетные мышцы, в зависимости от их функциональных особенностей, состоят из различного набора двигательных единиц. Тип ДЕ формируется в процессе онтогенеза и в зрелой мышце соотношение быстрых и медленных ДЕ уже не меняется. Как уже указывалось, в целой мышце мышечные волокна одной ДЕ перемежаются с волокнами нескольких других ДЕ. Перекрытие зон ДЕ обеспечивает, как считается, плавность сокращения мышцы, даже если каждая отдельная ДЕ не достигает состояния гладкого тетануса.
При выполнении мышечной работы нарастающей мощности, в активность всегда вначале включаются медленные двигательные единицы, которые развивают слабое, но тонко градуированное напряжение. Для выполнения значительных усилий, к первым подключаются крупные, сильные, но быстроутомляемые ДЕ второго типа.
Литейные сплавы.
Для производства отливок используются сплавы черных металлов: серые,
высокопрочные, ковкие и другие виды чугунов;
углеродистые и легированные стали; сплавы цветных металлов;
медные (бронзы и латуни), цинковые, алюминиевые и магниевые
сплавы; сплавы тугоплавких металлов: титановые, молибденовые, вольфрамовые и др.
Литейные сплавы должны обладать высокими литейными свойствами (высокой жидкотекучестью, малыми усадкой и склонностью к образованию трещин и др.); требуемыми физическими и эксплуатационными свойствами. Выбор сплава для тех или иных литых деталей сложной задачей, поскольку все требования в реальном учесть не представляется возможным.
Изготовление отливок специальными способами литья. Быстрыми темпами развиваются специальные способы литья: в оболочковые формы, по выплавляемым моделям, кокильное, под давлением, центробежное и другие, позволяющие получать отливки повышенной точности, с малой шероховатостью поверхности, минимальными припусками на механическую обработку, а иногда полностью исключающие ее, обеспечивают высокую производительность труда и т. д.
Литье в оболочковые формы.
Оболочковые формы (разъемные, тонкостенные), изготовляют следующим образом: металлическую модельную плиту, нагретую до температуры 200—250 °С, закрепляют на опрокидывающем бункере с формовочной смесью и поворачивают его на 180°.Формовочная смесь, состоящая из мелкозернистого кварцевого песка (93—96 %) и термореактивной смолы ПК-104 (4—7 %), насыпается на модельную плиту и выдерживается 10—30 с. От теплоты модельной плиты термореактивная смола в пограничном слое переходит в жидкое состояние, склеивает песчинки с образованием песчано-смоляной оболочки толщиной 5—20 мм в зависимости от времени выдержки. Бункер возвращается в исходное положение, излишки формовочной смеси ссыпаются на дно бункера, а модельная плита с полутвердой оболочкой снимается с бункера и
нагревается в печи при температуре 300—350 °С в течение 1—1,5 мин, при этом термореактивная смола переходит в твердое необратимое состояние. Твердая оболочка снимается с модели специальными толкателями.
Аналогично изготовляют и вторую полуформу. Готовые оболочковые полуформы склеивают быстротвердеющим клеем на специальных прессах, предварительно установив в них литейные стержни, или скрепляют скобами. Кроме оболочковых форм этим способом изготовляют оболочковые стержни, используя нагреваемые стержневые ящики. Оболочковые формы и стержни изготовляют на одно- и многопозиционных автоматических машинах и автоматических линиях.
Заливка форм производится в вертикальном или горизонтальном положении.
При заливке в вертикальном положении литейные формы помещают в опоки-контейнеры и засыпают кварцевым песком или металлической дробью для предохранения от преждевременного разрушения оболочки при заливке расплава.
Литье в оболочковые формы обеспечивает высокую геометрическую точность отливок, так как формовочная смесь, обладая высокой подвижностью, дает возможность получать четкий отпечаток модели.
Литье по выплавляемым моделям.
Этим способом отливки получают путем заливки расплавленного металла в формы, изготовленные по выплавляемым моделям многократным погружением в керамическую суспензию с последующими обсыпкой и отверждением.
Модельный состав в пастообразном состоянии запрессовывают в пресс-формы. После затвердевания модельного состава пресс-форма раскрывается и модель выталкивается в ванну с холодной водой. Затем модели собирают в модельные блоки с общей литниковой системой. В один блок объединяют 2—100 моделей.
Керамическую суспензию приготовляют тщательным перемешиванием огнеупорных материалов (пылевидного кварца, электрокорунда и др.) со связующим — гидролизованным раствором этил-силиката.
Формы по выплавляемым моделям изготовляют погружением модельного блока в керамическую суспензию, налитую в емкость с последующей обсыпкой кварцевым песком в специальной установке. Затем модельные блоки сушат 2—2,5 ч на воздухе или 20—40 мин в среде аммиака. На модельный блок наносят четыре—шесть слоев огнеупорного покрытия с последующей сушкой каждого слоя.
Модели из форм удаляют выплавлением в горячей воде. Для этого их
погружают на несколько минут в бак, наполненный водой, которая
устройством нагревается до температуры 80—90 °С.
После охлаждения отливки форма разрушается. Отливки на обрезных прессах или другими способами отделяются от литников и для окончательной очистки направляются на химическую очистку в 45 %-ном водном растворе едкого натра, нагретом до температуры 150 °С. После травления отливки промывают проточной водой, сушат, подвергают термической обработке и контролю.
Литье в кокиль.
При литье в кокиль отливки получают путем заливки расплавленного металла в металлические формы — кокили. По конструкции различают кокили: вытряхные; с вертикальным разъемом; с горизонтальным разъемом и др.
Полости в отливках оформляют песчаными, оболочковыми или металлическими стержнями. Кокили с песчаными или оболочковыми стержнями используют для получения отливок сложной конфигурации из чугуна, стали и цветных сплавов, а с металлическими стержнями — для отливок из алюминиевых и магниевых сплавов.
Рабочую поверхность кокиля и металлических стержней очищают от ржавчины и загрязнений. Затем на рабочую поверхность кокиля наносят теплозащитные покрытия для предохранения его стенок от воздействия высоких температур заливаемого металла, для регулирования скорости охлаждения отливки, улучшения заполняемости кокиля, облегчения извлечения отливки и т. д.
При сборке кокилей в определенной последовательности устанавливают
металлические или песчаные стержни, проверяют точность их установки и
закрепления, соединяют половины кокиля и скрепляют их.
Заливку металла осуществляют разливочными ковшами или автоматическими заливочными устройствами. Затем отливки охлаждают до температуры выбивки, составляющей 0,6—0,8 температуры солидуса сплава, и выталкивают из кокиля. Этот способ литья высокопроизводителен. Недостатки кокильного литья: высокая трудоемкость изготовления кокилей, их ограниченная стойкость, трудность изготовления сложных по конфигурации отливок.
Литье под давлением.
Литьем под давлением получают отливки в металлических формах (пресс- формах), при этом заливку металла в форму и формирование отливки
осуществляют под давлением. Изготовляют отливки на машинах литья под
давлением с холодной или горячей камерой прессования. В машинах с холодной камерой прессования камеры прессования располагаются либо горизонтально, либо вертикально.
На машинах с горизонтальной камерой прессования порцию расплавленного металла заливают в камеру прессования который плунжером под давлением 40—100 МПа подается в полость пресс-формы, состоящей из неподвижной и подвижной полуформ. Такие машины применяют для изготовления отливок из медных, алюминиевых, магниевых и цинковых сплавов массой до 45кг.
Центробежное литье. При центробежном литье сплав заливают во вращающиеся формы; формирование отливки осуществляется в период действие центробежных сил, что обеспечивает высокую плотность и механические свойства отливок.
Центробежным литьем отливки изготовляют в металлических, песчаных,
оболочковых формах и в формах для литья по выплавляемы моделям на
центробежных машинах с горизонтальной или вертикальной осью вращения.
Преимущества центробежного литья — получение внутренних полостей трубных заготовок без применения стержней; большая экономия сплава за счет отсутствия литниковой системы; возможность получения двухслойных заготовок, что достигается поочередной заливкой в форму различных сплавов (сталь и чугун, чугун и бронза и т. д.).
3. Методика назначения режимов при точении
Элементы режима точения выбирают в следующей последовательности.
Вначале задаются значением глубины резания. При этом стремятся снять за один проход весь припуск. Если, исходя из технологических требований, необходима последующая чистовая обработка, то за первый черновой проход снимается 80% припуска, а за второй-остальные 20%. Затем выбирается величина подачи. При этом необходимо назначать наибольшую допустимую подачу, исходя из требований точности и шероховатости обработанной поверхности. На практике для выбора величины подачи (S, мм/об) и глубины резания (t, мм) существуют соответствующие таблицы. В зависимости от выбранных глубины резания и подачи определяется оптимальная скорость резания v = CV КV /T *mS*xv t*yv, где CV – коэф, учитывающий физико-механические свойства обрабатываемого материала, материала режущей части инструмента и т.д., Т- период стойкости инструмента. Выбирается в зависимости от технологической схемы обработки. Для наружного точения Т= 60-90 мин, t – глубина резания, мм, S – подача в мм/об, Кv – поправочный коэф, учитывающий особенности геометрии заточки инструмента, применение смазочно-охлаждающих средств и т.п., m, xv, yv – показатели степеней, величины которых определяются свойствами обрабатываемого и инструментального материалов и условиями обработки. По оптимальной скорости резания находят частоту вращения шпинделя станка: n= 1000v / пи * D
4. Организация проведения обязательной и добровольной сертификации
Сертификация – это действие, проводимое независимо от участвующих сторон, лиц или органов и доказывающее, что идентифицированная продукция, процесс и услуги соответствуют конкретному стандарту или другому нормативному документу.
Сертификация продукции включает в себя комплекс проверок, цель которых – выявление соответствия товара требованиям качества и безопасности. Данная проверка проводится независимо от изготовителя и потребителя данной продукции, сертификацией занимается уполномоченная организация (орган по сертификации). По результатам проверку производитель получает документ, который и подтверждает полное соответствие товара всем вышеперечисленным требованиям. Этот документ называется Сертификатом соответствия или Сертификатом качества. Сертификацию принято подразделять на обязательную, проводимую уполномоченными на то органами, подтверждающим соответствие качества оказываемых услуг требованиям стандарта, и добровольную, проводимую по инициативе изготовителя или потребителя продукции. Проведение сертификации обуславливается необходимостью поддержания качества технического сервиса. Основные этапы сертификации: 1. Оценка деятельности предприятия 2. Оценка технологических процессов 3. Оценка качества услуг по ТО и ремонту 4. сопоставление оценочных показателей с нормативными 5. Выдача заключения комиссией по сертификации 6. принятие решения по выдаче сертификата.
Дата добавления: 2014-12-19; просмотров: 99 | Поможем написать вашу работу | Нарушение авторских прав |