Студопедия  
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Антиклинальные и синклинальные складки

Читайте также:
  1. Защита меню-раскладки.
  2. Измерение кожно-жировой складки
  3. Подвижные пояса (окраинные и внутриплитные пояса, геосинклинальные и орогенные структурные этажи).
  4. Принципы составления меню-раскладки.
  5. Элементы складки

Для разложения на множители суммы кубов используется тождество:

a3 + b3 = (a + b)(a2 - ab + b2),

которое называют формулой суммы кубов

Чтобы её доказать, умножим двучлен a + b на трехчлен a2 - ab + b2:

(a + b)(a2 - ab + b2) = a3 - a2b + ab2 + a2b - ab2 + b3 = a3 + b3.

Множитель a2 - ab + b2 в правой части равенства напоминает трёхчлен a2 - 2ab + b2, который равен квадрату разности a и b. Однако, вместо удвоенного произведения a и b в нем стоит просто произведение. Трехчлен a2 - ab + b2 называют неполным квадратом разности a и b.

Итак: сумма кубов двух выражений равна произведению суммы этих выражений и неполного квадрата их разности.

Для разложения на множители разности кубов используется тождество:

a3 - b3 = (a - b)(a2 + ab + b2),

которое называют формулой разности кубов

Чтобы её доказать, умножим двучлен a - b на трехчлен a2 + ab + b2:

(a - b)(a2 + ab + b2) = a3 + a2b + ab2 - a2b - ab2 - b3 = a3 - b3.

Множитель a2 + ab + b2 в правой части равенства напоминает трёхчлен a2 + 2ab + b2, который равен квадрату суммы a и b. Однако, вместо удвоенного произведения a и b в нем стоит просто произведение. Трехчлен a2 + ab + b2 называют неполным квадратом суммы a и b.

Итак: разность кубов двух выражений равна произведению разности этих выражений и неполного квадрата их суммы.


Основные данные о составе, строении, размерах и спутниках планет внутренней (Меркурий, Венера, Земля, Марс) и внешней (Юпитер, Сатурн, Уран, Нептун, Плутон) групп.

Все планеты земной группы имеют твёрдые оболочки, в которых сосредоточена почти вся их масса. Венера, Земля и Марс обладают газовой оболочкой - атмосферой. Только земля имеет жидкую оболочку из воды - гидросферу и оболочку состав и структура которой обусловлена прошлой и современной деятельностью живых организмов - биосферу. Четыре меньшие внутренние планеты — Меркурий, Венера, Земля и Марс (также называемые планетами земной группы) — состоят в основном из силикатов и металлов. Четыре внешние планеты — Юпитер, Сатурн, Уран и Нептун, также называемые газовыми гигантами — намного более массивны, чем планеты земной группы. Крупнейшие планеты Солнечной системы, Юпитер и Сатурн, состоят главным образом из водорода и гелия; внешние, меньшие Уран и Нептун, помимо водорода и гелия, содержат в своём составе метан и угарный газ.

Четыре внутренние планеты состоят преимущественно из тяжёлых элементов, имеют малое количество (0—2) спутников, у них отсутствуют кольца. В значительной степени они состоят из тугоплавких минералов, таких как силикаты, которые формируют их мантию и кору; и металлов, таких как железо и никель, которые формируют их ядро. У трёх внутренних планет — Венеры, Земли и Марса — имеется атмосфера; у всех есть ударные кратеры и тектонические детали рельефа, такие как рифтовые впадины и вулканы.

Четыре планеты-гиганта, также называемые газовыми гигантами, все вместе содержат 99 % массы вещества, обращающегося на орбитах вокруг Солнца. Юпитер и Сатурн преимущественно состоят из водорода и гелия; Уран и Нептун обладают бо́льшим содержанием льда в их составе. Некоторые астрономы из-за этого классифицируют их в собственной категории — «ледяные гиганты»[84]. У всех четырёх газовых гигантов имеются кольца, хотя только кольцевая система Сатурна легко наблюдается с Земли.

Планеты земной группы по химическому составу, по-видимому, близки к Земле. Эти планеты по-разному вращаются вокруг своей оси: один оборот длится от 24 часов для Земли и до 243 суток у Венеры.

 

Пояс астероидов. Метеориты, их состав и значение для геологии. Кометы. Гипотезы происхождения Солнечной системы. Краткий обзор катастрофических гипотез. Эволюционные гипотезы Канта-Лапласа, Шмидта, Фесенкова. Гипотеза двух резервуаров. Представления о гетерогенной и гомогенной аккреции Земли.

Это твердые каменистые тела, которые, подобно планетам, движутся по околосолнечным эллиптическим орбитам. Кольцевая область пространства, которую занимают эти тела, называется Главным поясом астероидов. При средней линейной орбитальной скорости около 20 км/с астероиды главного пояса затрачивают на один оборот вокруг Солнца от 3 до 9 земных лет в зависимости от удаленности от него.

Падающие с неба камни или куски железа — их называют метеоритами — ведут себя удивительно миролюбиво по отношению к людям. Если же в атмосферу влетает обломок крупнее, атмосфера может сработать как тормоз и по­гасить космическую скорость, прежде чем кусок полностью сгорит. Тогда его остаток упадет на поверхность Земли. Это — метеорит. Падение метеорита сопровождается полетом по небу огромного шара и громоподобными звуками.

Метеориты делятся на три больших класса: железные, каменные и железокаменные. Железные метеориты состоят в основном из нике­листого железа. В земных горных породах естественный сплав железа с никелем не встречается, так что присутствие никеля в кусках железа указывает на его космическое (или промышленное) происхождение.

Эти тела Солнечной системы движутся по сильно вытянутым орбитам, на значительных расстояниях от Солнца выглядят как слабо светящиеся пятнышки овальной формы, с приближением к Солнцу у нихпоявляются голова и хвост. Центральная часть головы называется ядром. Диаметр ядра 0,5-20 км. Маленькое ядро кометы является единственной ее твердой частью, в нем сосредоточена почти вся ее масса. Поэтому ядро — первопричина всего остального комплекса кометных явлений. Ядра комет до сих пор все еще недоступны телескопическим наблюдениям, так как они вуали­руются окружающей их светящейся материей, непрерывно истекающей из ядер. Ядро — главная часть кометы. Однако до сих пор нет единодушного мнения, что оно представляет собой на самом деле. Комета- небольшое небесное тело, имеющее туманный вид, обращающееся вокруг Солнца по коническому сечению с весьма растянутой орбитой. При приближении к Солнцукомета образует кому и иногда хвост из газа и пыли.

История происхождения Солнечной системы на протяжении многих веков волнуетвыдающихся мыслителей планеты. Особенно энергично и вместе с тем направленно решение обозначенной проблемы началось после признания наукой гелио­центрической теории Н. Коперника в античную эпоху и Средние века. Поскольку понятие Солнечной системы не получило еще конкретного содержания, вопрос о ее происхождении и, соответственно, абсолютном возрасте решался в контексте библейского писания.

Одним из первых, кто попытался объяснить образование Солнечной системы, был французский естествоиспытатель Ж. Л. Леклерк де Бюффон Он считал, что Солнечная система возникла в результате столкновения Протосолнца с крупным космическим телом. Удар пришелся по касательной, при этом Солнце и возникший из него протуберанец получили направленное вращение. Крупные куски протуберанца, вращаясь вокруг Солнца, уплотнялись, приобретали все большую скорость и оформлялись как планеты. В своей гипотезе Бюффо н освещает отдельные моменты строения Солнечной системы, одинаковое вращение планет и Солнца, природу спутников.

Согласно гипотезе И. Канта, Солнце и планеты образовались одновременно из некоторой туманности. Сжимаясь под действием силы всемирного тяготения, туманность вращалась все быстрее и быстрее. В результате действия больших центробежных сил, возникающих при быстром вращении, от экваториального пояса Протосолнца начинают отделяться кольца. В дальнейшем эти кольца концентрировались в планеты.

В создавшейся ситуации появились альтернативные космогонические гипотезы, опиравшиеся на высказывание шведского химика Аррениуса: «Планеты и звезды могут появиться из-за действия высшей силы (катастрофы) и только из материала Протосолнца». На базе высказанного Аррениусом положения появляются космогонические гипотезы катастрофическою содержания, представляющие полную противоположность гипотезе Канта — Лапласа. Если последняя объясняла образование Солнечной системы как единый непре­рывный процесс от простого к сложному, то катастрофические гипотезы трактовали процессы эволюции таких систем как дело случая, представляющее исключительное явление.

Гипотеза Джинса При прохождении вблизи крупного космического тела шар получаст вращение с последующим уплотнением вещества и увеличением скорости вращения. Когда форма сфероида достигла вида «чечевицы», от его экваториальной части начали отделяться кольца. Отделение колец продолжалось и после ухода встречной звезды. Это вещество, согласно Джинсу, послужило исходным материалом для образования планет.

В гипотезе Мультона — Чемберлена (1915-1918) суть процесса остается неизменной, как и в представлении Джинса. При близком прохождении от Протосолнца крупного космического тела из двух диаметрально противоположных на экваторе участков, определяемых концами длинною диаметра сфероида Протосолнца, возникают два npomy6epafiца. После ухода возбуждающего тела протуберанцы остаются в поле притяжения Солнца. Истечение прекращается. Протуберанцы сливаются, образуя спираль, ветви которой неравномерно заполнены космической пылью. Сливаясь, мелкие частицы образуют более крупные, названные Чермберленом «плаиетезималями», рассматриваемые как центры концентрации вещества будущих планет.

6.Магнитное поле: магнитосфера Земли, магнитное склонение и наклонение. Миграция магнитных полюсов и их инверсия. Региональные и локальные магнитные аномалии. Природа магнитного поля Земли.

Магнитное поле Земли связано с наличием в ее недрах жидкого железо-никелевого ядра. Если гравитационным полем обладают все планеты Солнечной системы, то магнитное поле имеется не у всех планет. Магнитное поле действует на магнитные тела, в частности на магнитную стрелку компаса.

Магнитное склонение – угол между направлениями на географический и магнитный полюса.

Магнитное наклонение – угол наклона магнитной стрелки относительно горизонтальной поверхности. На полюсе угол равен 900, на экваторе – 00

Изогоны – линии, соединяющие точки с одинаковым магнитным склонением

Изоклины – линии, соединяющие точки с одинаковым магнитным наклонением.

Магнитные аномалии – отклонения измеренного (наблюденного) магнитного поля от расчетного.

Региональные аномалии связаны крупными неоднородностями в строении ядра

Локальные аномалии связаны с наличием горных пород, отличающихся по магнитным свойствам (магнитной восприимчивости)

Магнитосфера – объем околоземного пространства в пределах которого магнитное поле выше межпланетного. Магнитное поле убывает пропорционально кубу расстояния до Земли.Со стороны Солнца магнитное поле прослеживается на 10 земных радиусов, с противоположной стороны оно убывает медленно и точная граница не зафиксирована (оценивается в 900 R).

7. Гравитационное поле Земли, его неоднородности: локальные и региональные аномалии. Понятие изостозии.

Гравитационным полем обладают все тела, имеющие массу покоя. Оно выражается в том, что материальные тела притягиваются друг к другу с силой:

F=γ(М*m)/R2, где

γ – гравитационная постоянная

М – масса Земли

m – масса пробного тела

R – расстояние до центра масс

В силу различия в полярном и экваториальном радиусах Земли сила тяжести на полюсе будет больше, чем на экваторе. Полярный радиус меньше, чем экваториальный

Отклонение измеренного значения гравитационного поля от расчетного получило название гравитационной аномалии. Гравитационные аномалии бывают региональные и локальные. Региональные гравитационные аномалии связаны с крупными плотностными неоднородностями в строении Земли: горные области, поднятые или опущенные блоки земной коры Локальные гравитационные аномалии связаны с наличием отдельных слоев или небольших геологических тел с большой или малой плотностью горных пород.

Изостазия (изостатическое равновесие) — гидростатически равновесное состояние земной коры, при котором менее плотная земная кора (средняя плотность 2.8 г/см³) «плавает» в более плотном слое верхней мантии — астеносфере (средняя плотность 3.3 г/см³), подчиняясь закону Архимеда. Изостазия не является локальной, то есть в изостатическом равновесии находятся достаточно крупные (100—200 км) блоки.

8. Тепловое поле Земли: представления об источниках энергии Земли, геотермические градиент и ступень. Пояс постоянных температур. Использование тепловой энергии Земли человеком.

Связано с тепловой энергией горных пород и его можно оценивать по температуре пород.

Источники тепла ЗЕМЛИ:

1. Гравитационная дифференциация на ранних этапах развития ЗЕМЛИ

2. Радиоактивный распад в верхних оболочках ЗЕМЛИ (урана, тория, калия и др.)

3. Химические реакции в недрах ЗЕМЛИ с выделение тепла

4. Трение оболочек ЗЕМЛИ в результате приливных и отливных явлений со стороны ЛУНЫ

5. Бомбардировка поверхности ЗЕМЛИ кометами при падении которых разогреваются верхние оболочки ЗЕМЛИ

Пояс постоянных температур – это глубина от поверхности земли, на которой не сказываются сезонные колебания температур

Геотермический градиент – это изменение температуры с углублением от поверхности земли на единицу длины. Средняя геотермическая ступень по земному шару составляет 30 на 100 метров

Геотермическая ступень – это глубина, на которую нужно опуститься вниз, чтобы температура пород изменилась на 10. Средняя геотермическая ступень составляет 33 метра

Мало того, человек еще долгие годы будет использовать тепло земных недр в хозяйственных нуждах. Геотермальная энергетика становится все более реальной альтернативой традиционным источникам тепла. Только за последний год в Швейцарии введено в действие более 3 тыс. тепловых насосов, в США работает более 400 тыс. таких насосов (Ю. А. Попов). Ряд стран активно развивают геотермальную энергетику, обеспечивающую получение электроэнергии и тепла для подогрева. В России введена в строй Мутновская ГеоТЭС. Во многих регионах нашей страны геотермальная энергетика может оказаться главной надеждой на получение дешевой и экологически чистой тепловой энергии в будущем.

9. Атмосфера Земли: газовый состав, плотностная и температурная неоднородность. Озоновый слой и его значение для живого на Земле. Радиационные пояса в атмосфере.

Атмосфера — воздушная оболочка Земли, изучением которой занимается специальная наука — метеорология. Однако с атмосферой связано большинство экзогенных геологических процессов, имеющих огромное значение для развития нашей планеты.

Атмосфера представляет собой механическую смесь газов. У поверхности Земли воздух состоит из азота (78,08 %), кислорода (20,95 %),аргона (0,93 %), углекислого газа (0,03 %); водород, неон, озон, гелий, криптон, ксенон, аммиак, перекись водорода, эманации радия вместе составляют 0,01 %. Кроме того, в атмосфере, особенно в нижних ее слоях, содержатся водяной нар, пыль и микроорганизмы. Состав газов в атмосфере в основном сохраняется, хотя с высотой наблюдаются изменения в соотношении отдельных компонентов.

Озо́новый слой — часть стратосферы на высоте от 12 до 50 км (в тропических широтах 25—30 км, в умеренных 20—25, в полярных 15—20), в которой под воздействием ультрафиолетового излучения Солнца молекулярный кислород (О2) диссоциирует на атомы, которые затем соединяются с другими молекулами О2, образуя озон (О3). Относительно высокая концентрация озона (около 8 мл/м³) поглощает опасные ультрафиолетовые лучи и защищает всё живущее на суше от губительного излучения.

Более того, если бы не озоновый слой, то жизнь не смогла бы вообще выбраться из океанов и высокоразвитые формы жизни типа млекопитающих, включая человека, не возникли бы. Наибольшая плотность озона встречается на высоте около 20—25 км, наибольшая часть в общем объёме — на высоте 40 км. Он защищает ее от ультра­фиолетового излучения, пагубно влияющего на все живое на Земле. Большое зна­чение озоновый слой имеет и для поддержания температурного баланса на Зем­ле.

Радиационные пояса Земли внутренние области земной магнитосферы, в которых магнитное поле Земли удерживает заряженные частицы (Протоны,Электроны,Альфа-частицы), обладающие кинетической энергией. При движении заряженной частицы в магнитном поле Земли её мгновенный центр вращения находится на одной и той же поверхности, получившей название магнитной оболочки.

10.Гидросфера: наземная и подземная составляющие. Формы нахождения воды: жидкая, твердая и газообразная и их объемные соотношения между собой. Биосфера. Ноосфера – как оболочка активного проявления человеческой деятельности.

ГИДРОСФЕРА— прерывистая водная оболочка Земли, одна из геосфер, располагающаяся между атмосферой и литосферой; совокупность океанов, морей, континентальных водоемов и ледяных покровов. Г. покрывает около 70,8% земной поверхности

В науках о Земле под гидросферой подразумевают прерывистую поверхностную оболочку, состоящую из воды морей и океанов, поверхностных водоемов суши, временных и постоянных водотоков, твердой воды в виде снега и льда. Наряду с поверхностной существует и подземная гидросфера, к которой относятся грунтовые и подземные, в том числе артезианские воды.

Биосфера — оболочка Земли, заселённая живыми организмами и преобразованная ими. Биосфера начала формироваться не позднее, чем 3,8 млрд. лет назад, когда на нашей планете стали зарождаться первые организмы. Она проникает во всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всех живых организмов. В ней обитает более 3 000 000 видов растений, животных, грибов и бактерий. Человек тоже является частью биосферы, его деятельность превосходит многие природные процессы

Ноосфера — предположительно новая, высшая стадия эволюции биосферы, становление которой связано с развитием общества, оказывающего глубокое воздействие на природные процессы

1. ноосфера в стадии становления, развивающаяся стихийно с момента появления человека;

2. ноосфера развитая, сознательно формируемая совместными усилиями людей в интересах всестороннего развития всего человечества и каждого отдельного человека".

Форма и размеры Земли. Особенности строения ее поверхности. Понятие о геоиде. Масса и плотность Земли. Основные сведения о земной коре, мантии и ядре. Состав и строение земной коры. Химический состав земной коры.

Известно, что планета сформировалась под действием двух сил — силы взаимного притяжения её частиц и центробежной силы, возникающей из-за вращения планеты вокруг своей оси. Сила тяжести представляет собой равнодействующую этих двух сил. Степень сжатия зависит от угловой скорости вращения: чем быстрее вращается тело, тем больше оно сплющивается у полюсов.

Расстояние от центра планеты до экватора называется экваториальным радиусом и составляет 6378,2 км, а расстояние до полюса — полярным радиусом и равно 6356,8 км. Разница полярного и экваториального радиусов составляет примерно 21 км. Следовательно, наша планета действительно не похожа на ровный шар, а сплющена у полюсов и является эллипсоидом.

Истинную геометрическую форму Земли назвали геоидом — телом с воображаемой поверхностью, совпадающей с поверхностью спокойного океана, которая на суше мысленно продолжается под материками и островами.

Детальные измерения с помощью искусственных спутников показали, что Земля сжата не только на полюсах, но и по экватору (наибольший и наименьший радиусы по экватору отличаются на 210 м - прим. от geoglobus.ru), а значит, является трехосным эллипсоидом. Согласно последним расчётам, этот эллипсоид несимметричен и по отношению к экватору — южный полюс расположен к экватору немного ближе, чем северный.

Рельеф нашей планеты неровен — низменные равнины чередуются с высокими горными хребтами, а на дне океана обнаружены глубоководные впадины

масса – 5976·10 21 кг, ср. плотность – 5518 кг/м³.

Строение нашей планеты сегодня хорошо известно по сейсмическим данным и анализу собственных колебаний Земли, а состав ее верхних оболочек (земной коры, гидросферы и атмосферы) – по геологическим данным и прямым измерениям. Наши сведения о составе мантии Земли менее определенные, но все-таки по совокупности всех геологических и геофизических данных о строении и составе этой земной оболочки можно судить достаточно уверенно. О составе земного ядра можно высказывать лишь более или менее обоснованные гипотезы.

земная кора (внешняя оболочка), толщина которой изменяется от нескольких километров (в океанических областях) до нескольких десятков километров (в горных районах материков). Сфера земной коры очень небольшая, на ее долю приходится всего около 0,5% общей массы планеты. Основной состав коры - это окислы кремния, алюминия, железа и щелочных металлов. В составе континентальной коры, содержащей под осадочным слоем верхний (гранитный) и нижний (базальтовый), встречаются наиболее древние породы Земли, возраст которых оценивается более чем в 3 млрд. лет. Океаническая же кора под осадочным слоем содержит в основном один слой, близкий по составу к базальтовым. Возраст осадочного чехла не превышает 100-150 миллионов лет.

На долю Мантии приходится около 67% общей массы планеты. Твердый слой верхней мантии, распространяющийся до различных глубин под океанами и континентами, совместно с земной корой называют литосферой - самой жесткой оболочкой Земли. Под ней отмечен слой, где наблюдается некоторое уменьшение скорости распространения сейсмических волн, что говорит о своеобразном состоянии вещества. Этот слой, менее вязкий и более пластичный по отношению к выше и ниже лежащим слоям, называют астеносферой.

Земное ядро открыто в 1936 году. Земное ядро разделяется на 2 отдельные области: жидкую (внешнее ядро) и твердую (внутреннее), переход между ними лежит на глубине 5156 км. Железо - элемент, который соответствует сейсмическим свойствам ядра и обильно распространен во Вселенной, чтобы представить в ядре планеты приблизительно 35% ее массы. По современным данным, внешнее ядро представляет собой вращающиеся потоки расплавленного железа и никеля, хорошо проводящие электричество.

Земная кора представляет собой верхнюю часть литосферы и подстилается литосферной мантией. Кора сложена магматическими, осадочными и образовавшимися за счет тех и других метаморфическими породами. Соотношение исходных магматических и осадочных пород, по Кларку, 95:5. Осадочные породы, в свою очередь, состоят из (%): сланцев - 4, песчаников - 0,75, известняков - 0,25

По строению выделяется кора двух типов – океаническая и континентальная, причем последняя делится на два подтипа:

1. Крупные устойчивые платформы с дорифейским кристаллическим основанием и докембрийские кратоны, составляющие около 70% площади континентов. В их строении выделяются слабо деформированный чехол или осадочная оболочка и кристаллический фундамент, обнажающийся на приподнятых щитах.

2. Протяженные орогенические или складчатые пояса позднего докембрия и фанерозоя, имеющие значительно более сложное строение. По современным представлениям, эти складчатые пояса имеют аккреционное происхождение и представляют собой агломерат фрагментов породных ассоциаций древних океанов, островных дуг, микроконтинентов и т.д.

 

Верхняя каменная оболочка Земли — земная кора — сложена различными по составу и происхождению горными породами. Любая горная порода представляет собой определенное сочетание минералов, являющихся, в свою очередь, химическими элементами или их природными соединениями. По данным современной геохимии, в земной коре установлено 93 химических элемента. Большинство из них являются сложными, то есть представлены смесью различных изотопов. Лишь 22 химических (например, натрий, марганец, фтор, фосфор, золото) не имеют изотопов и поэтому называются простыми. Распределены химические элементы в земной коре крайне неравномерно.Химический состав земной коры изменяется в течение геологического времени, причем эта эволюция продолжается по сей день. Основными причинами изменения химического состава являются:

• процессы радиоактивного распада, приводящие к самопроизвольному превращению одних химических элементов в другие, более устойчивые в условиях земной коры. Согласно расчетам В. И. Вернадского, в современную эпоху только за счет ядерных превращений ежегодно обновляют свой химический состав 10в-101Н т вещества земной коры;

• поступление метеорного вещества в виде метеоритов и космической пыли (16 тыс. т. ежегодно);

• продолжающиеся процессы дифференциации вещества Земли,приводящие к миграции химических элементов из одной гео­сферы в другую.

12. Понятие о минералах. Классификации минералов. Важнейшие породообразующие минералы. Главнейшие горные породы и их разделение по условиям образования: магматические, осадочные и метаморфические. Минералы и горные породы как полезные ископаемые.

Минералами (от греч. «минера» — руда) называют однородные по составу и внутреннему строению природные вещества (химические соединения или отдельные элементы), образовавшиеся в результате процессов, происходящих в недрах земной коры и на ее поверхности.

В настоящее время установлено около 3500 минеральных видов. Однако лишь несколько десятков минералов (около 70) пользуются широким распространением. Они входят в состав горных пород и руд и называются породообразующими. Абсолютное большинство минералов являются твердыми кристаллическими телами, и только незначительное их число встречается в земной коре в твердом аморфном (опал, лимонит), жидком (вода, ртуть) или газообразном (углекислый газ, сероводород) состоянии.

Современная классификация минералов основывается на кристаллохимических принципах. Наиболее крупные единицы классификации — тины и классы — выделяются по химическому принципу, а именно типу химического соединения, характеру кислотного остатка. Более мелкие единицы классификации — подклассы, группы — выделяются по особенностям строения кристаллических решеток минералов, то есть по структурному принципу.

Роль различных минералов в составе земной коры неодинакова.

Наиболее часто встречаются минералы, в состав которых входят наиболее распространенные химические элементы — кислород, кремний и алюминий. Поэтому весовое содержание в земной коре кислородосодержащих минералов достигает 98 %, из них около 75 % приходится на силикаты и алюмосиликаты.

 

Большое число минералов имеет важное практическое значение.

Минералы могут использоваться, во-первых, для извлечения из них ценных компонентов, такие минералы называются рудными (халько­пирит, галенит, сфалерит, магнетит, апатит и др.); во-вторых, непосредственно в виде минералов благодаря их определенным полезным свойствам (драгоценные камни, асбест, мусковит, исландский шпат); наконец, многие минералы образуют горные породы, которые, в свою очередь, часто находят практическое применение.

К этому типу принадлежат минералы, состоящие из одного химического элемента. Среди них выделяются самородные металлы (золото, серебро, платина и металлы ее группы), полуметаллы (висмут, мышьяк, сурьма) и самородные неметаллы (сера и графит), которые наиболее распространены. Общее весовое содержание самородных элементов в земной коре невелико и не превышает 0,1 %. К собственно породообразующим в этой группе минералов можно отнести только графит, однако практическое значение большинства из них достаточно велико.

 

Горными породами называются естественные ассоциации минералов, образовавшиеся па поверхности или под поверхностью Земли в результате различных эндогенных или экзогенных процессов. По происхождению все горные породы подразделяются на магматические, осадочные и метаморфические. Магматические горные породы образуются при охлаждении и затвердевании магматического расплава на разных глубинах или на поверхности Земли. Осадочные горные породы формируются в результате разрушения любых по происхождению пород (осадочных, магматических или метаморфических), переотложепия продуктов разрушения на поверхности Земли (в морях, океанах, на суше и т. д.) и последующего преобразования — диагенеза. Метаморфические горные породы возникают па разных глубинах при воздействии на них высоких температур и давлений, а также газов и флюидов. горная порода имеет определенный вещественный состав, обладает специфическим строением и образует в земной коре определенное объемное тело, то есть свою форму залегания (пласт, линза, массив и др.).

 

Магматические горные породы образуются в результате затвердевания магмы па глубине или па земной поверхности при вулканических извержениях. Магматические породы также называют изверженными.

По содержанию кремнезема (окисла Si02) магматические породы

подразделяются па четыре группы:

• кислые, Si0 2 = 64-78 %,

• средние, Si0 2 = 53-64 %,

• основные, Si0 2 = 44-53 %,

• ультраосновные, SiO, 2 = 30-44 %.

Осадочная горная порода — это порода, существующая в термодинамических и физико-химических условиях, характерных для поверхностной части земной коры, и образующаяся в результате переотложения продуктов выветривания и разрушения различных горных пород, химического и механического выпадения осадка из воды, жизнедеятельности организмов или всех трех процессов одновременно.

Метаморфические породы образуются в результате структурно-текстурных и минеральных, а иногда и химических преобразований ранее существовавших пород (осадочных, магматических и метаморфических) в связи с изменением физико-химических условий под воздействием разнообразных эндогенных процессов.

Горные породы прочно вошли в практическую деятельность человека с глубокой древности — с момента, когда он научился обтесывать камень для примитивного орудия или для постройки жилища.

На протяжении веков человек открывал все новые и новые ценные свойства природного камня. Прежде всего это коснулось самых распространенных типов горных пород — глины, песка и податливых на обработку известняка и туфа, которые постепенно стали основой строительства.

Новые строительные материалы, используемые ныне, — стекло, цемент, бетон, строительная керамика — это также переработанные горные породы: кварцевые пески, кварциты, пегматиты, глины, известняки, мергель, гравий и т.д. Украшением фасадов зданий и их внутренних помещений служит облицовка из полированного гранита, габбро, лабрадорита, мрамора, кварцита.

Такие горные породы, как нефть, уголь, торф, горючие сланцы, представляют собой основу топливно-энергетических ресурсов человечества.

Горными породами являются и некоторые руды черной и цветной металлургии (железистые кварциты, медистые песчаники, бокситы и др.). В металлургии широко применяются известняки и доломиты, огнеупорные глины, магнезиты, форстеритовые породы и кварциты.

13. Типы земной коры: континентальная, океанская и переходная. Астеносфера, литосфера, тектоносфера. Представления об агрегатном состоянии масс внутри Земли и предполагаемом химическом составе геосфер.

Континентальная земная кора в районах равнин имеет мощность до 40 км, под горными сооружениями — 60-70 км, причем максимальные значения выявлены иод Андами и Гималаями (до 75 км). Выделяют в строении континентальной коры две части: верхнюю — осадочную — и нижнюю, сложенную магматическими и метаморфическими породами.

Океанский тин земной коры отличается от континентального по мощности и составу. Мощность ее изменяется от 5 до 12 км (6-7 км в среднем). Верхний слой морских осадков характеризуется мощностью до 1 км (скорость распространения сейсмических волн менее 3 км/с). Ниже залегает второй слой мощностью от 1 до 3 км (4-4,5 км/с). Результаты глубоководного бурения свидетельствуют о том, что он состоит из базальтов. Третий слой, еще не достигнутый бурением, имеет мощность 3-5 км (6,3-6,4 (7) км/с). Пробы, отобранные драгами, говорят о том, что сложен он основными (габбро) и частично ультраосновны м и (и ирокссн иты) по родам и.

 

Астеносфера— слой в верхней мантии планеты (в частности, Земли). Более пластична, чем соседние слои. Это даёт возможность блокам литосферы (твёрдой оболочки планеты) двигаться по ней, а также обеспечивает изостатическое равновесие этих блоков. Астеносфера наблюдается как слой пониженной скорости сейсмических волн слой и повышенной электропроводности. На Земле кровля астеносферы лежит на глубинах 100–120 км под материками и 50–60 км под океанами

Литосфе́ра — твёрдая оболочка Земли. Состоит из земной коры и верхней части мантии, до астеносферы, где скорости сейсмических волн понижаются, свидетельствуя об изменении пластичности пород. В строении литосферы выделяют подвижные области (складчатые пояса) и относительно стабильные платформы. Блоки литосферы — литосферные плиты — двигаются по относительно пластичной астеносфере.

Тектоносфера — это внешняя оболочка Земли, охватывающая земную кору и верхнюю мантию, основная область проявления тектонических и магматических процессов. Для тектоносферы характерна вертикальная и горизонтальная неоднородность физических свойств и состава слагающих её пород.

14. Объективные трудности при изучении Земли: сложность строения, огромные размеры, длительность геологических процессов. Методы, используемые при изучении Земли (непосредственных наблюдений (геологического картирования), сравнительно-исторический, актуалистический, геофизические, химические, дистанционные и др.).

1. Непосредственного наблюдения

2. Актуалистический

3. Сравнительно-исторический

4. Дистанционные методы

5. Геофизические методы

6. Геохимические методы

Актуалистический метод

метод научного познания геологической истории Земли, реконструкции процессов и обстановок прошлого путём использования закономерностей, выявленных при изучении совр. геол. процессов. При применении A. м. необходимо учитывать эволюцию Земли, a следовательно, специфичность геол. обстановок и процессов в разл. периоды её истории.

Сравнительно - исторический метод

научный метод, с помощью которого путём сравнения выявляется общее и особенное в исторических явлениях, достигается познание различных исторических ступеней развития одного и того же явления или двух разных сосуществующих явлений; разновидность исторического метода С.-и. м. позволяет выявить и сопоставить уровни в развитии изучаемого объекта, произошедшие изменения, определить тенденции развития. Можно вычленить различные формы С.-и. м.: сравнительно-сопоставительный метод, который выявляет природу разнородных объектов; сравнение историко-типологическое, которое объясняет сходство не связанных по своему происхождению явлений одинаковыми условиями генезиса и развития; историко-генетическое сравнение, при котором сходство явлений объясняется как результат их родства по происхождению; сравнение, при котором фиксируются взаимовлияния различных явлений.

ДИСТАНЦИОННЫЕ МЕТОДЫ, дистанционного зондирования методы— общее название методов изучения наземных объектов и космических тел неконтактным путём на значительном расстоянии (например, с воздуха или из космоса) различными приборами в разных областях спектра. В геологии дистанционные методы используются для изучения рельефа, строения земной коры, магнитных игравитационных полей Земли, разработки теоретических принципов автоматизированных систем космофотогеологического картирования, поиска и прогнозирования месторождений полезных ископаемых; исследования глобальных особенностей геологических объектов и явлений, получения предварительных данных о поверхности Луны, Венеры, Марса и др. Развитие дистанционного метода связано с улучшением наблюдательной базы (спутники-лаборатории, балонные аэростанции и др.) и технической аппаратуры (внедрение криогенной техники, снижающей уровень помех), формализацией дешифровочного процесса и созданием на этой основе машинных методов обработки информации, дающих максимальную объективность оценок и корреляций.

Геофизические методы разведки исследование строения земной коры физическими методами с целью поисков и разведки полезных ископаемых; разведочная геофизика — составная часть геофизики. Г. м. р. основаны на изучении физических полей (гравитационного, магнитного, электрического, упругих колебаний, термических, ядерных излучений). Измерения параметров этих полей ведутся на поверхности Земли (суши и моря), в воздухе и под землёй (в скважинах и шахтах). Получаемая информация используется для определения местонахождения геологических структур, рудных тел и т.п. и их основных характеристик. Это позволяет выбрать наиболее правильное направление дорогостоящих буровых и горных работ и тем самым повысить их эффективность

ГЕОХИМИЧЕСКИЕ МЕТОДЫ ПОИСКОВ основаны на изучении закономерностей пространств. распределения хим. элементов или их природных соед. в литосфере, гидросфере, атмосфере и живом в-ве. В геохим. методах поисков (Г. м. п.) оценивают концентрации ряда характерных для данного месторождения элементов-индикаторов, аномальные концентрации к-рых могут незначительно отличаться от геохим. Фона.

Г. м. п. используются преим. для поисков месторождений: погребенных, т. е. покрытых более молодыми отложениями; слепых, т. е. не затронутых эрозионным срезом; таких, в к-рых рудные тела внешне не отличаются от безрудных пород (как, напр., в месторождениях редких, радиоактивных и рассеянных элементов).

 

15. Науки геологического цикла: кристаллография, минералогия, петрография, литология, структурная геология, геотектоника, петрология, вулканология, седиментология, геодинамика, сейсмология, геология полезных ископаемых, гидрогеология, инженерная геология и др.

Кристаллография Изучает кристаллы, их форму и строение

Минералогия изучает свойства и состав кристаллов

Петрография наука о горных породах

Литология Изучает состав и строение осадочных горных пород

Структурная геология изучает строение небольших геологических тел до десятков км Геотектоника (изучает крупные структуры Земли)

Петрология наука, изучающая магматические и метаморфические горные породы

Вулканология (изучает извержения вулканов)

Седиментология (изучает процесс накопление осадков в морях и океанах)

Сейсмология (изучает прохождение сейсмических волн в Земле и, в частности землетрясения)

Геодинамика наука о природе глубинных сил и процессов, возникающих в результате планетарной эволюции Земли

Геология полезный ископаемых прикладной раздел геологии, изучающий месторождения полезных ископаемых, их строение, состав, условия образования и закономерности размещения в недрах Земли.

Гидрогеология Изучает подземные воды и гидрогеологические свойства горных пород

Инженерная геология наука геологического цикла, ветвь геологии, изучающая морфологию, динамику и региональные особенности верхних горизонтов земной коры (литосферы) и их взаимодействие с инженерными сооружениями.

16. Смежные с геологией науки, которые изучают Землю своими методами: геофизика, геохимия, палеонтология.

ПАЛЕОНТОЛОГИЯ - наука на стуке геологии и биологии(наука об организмах, существовавших в прошлые геологические периоды и сохранившихся в виде ископаемых останков, а также следов их жизнедеятельности.)

ГЕОФИЗИКА - наука на стуке геологии и физики(Спутниковые технологии в изучении гравитационного поля и рельефа Земли)

ГЕОХИМИЯ - наука на стуке геологии и химии (наука о химическом составе Земли и планет (космохимия), законах распределения и движения элементов и изотопов в различных геологических средах, процессах формирования горных пород, почв и природных вод.)

17. Методы определения относительного возраста горных пород. Палеонтологический метод, как основной для определения относительного возраста осадочных и вулканогенно-осадочных пород. Геохронологическая шкала: крупные стратиграфические и геохронологические подразделения.

В основе метода-определения видового состава ископаемых остатков древних организмов и представления об эволюционном развитии органического мира, согласно которого в древних отложениях находятся остатки простых организмов, а в более молодых - организмысложного строения. Эта особенность используется для определения возраста пород.

Для геологов важным моментом является то, что эволюционные изменения в организмах и появление новых видов происходит в определенный промежуток времени. Границы эволюционных преобразований - это границы геологического времени накопления осадочных слоев и горизонтов. Чтобы избежать ошибок, наряду с этим методом используется метод палеонтологических комплексов. В этом случае используется весь комплекс вымерших организмов, встреченный в исследуемой толще.

На геологических картах горные породы подразделяются по их относительному возрасту. Поэтому при составлении геологических карт необходимо прежде всего детально изучить возрастную (геохронологическую) последовательность пород, участвующих в строении изучаемого. Общие сведения о геологических картах и разрезах района. В связи с этим важнейшей задачей является определить относительный возраст горных пород, установить, какие породы образовались раньше и какие позднее и к какой гсохроиологической единице они относятся.

Стратиграфический метод заключается в изучении взаимоотношений слоев друг с другом, прослеживании их на площади и установлении последовательности образования слоев во времени. Обычно в природе слой или пласт, находящийся внизу, является более древним, чем вышележащий. Поэтому стратиграфический метод не всегда дает однозначные результаты и его приходится дополнять другими методами.

При решении задач по расчленению и сопоставлению горных пород в настоящее время все в более широком масштабе применяются методы абсолютной геохронологии, то есть измерения геологического времени и времени образования и преобразования (метаморфизма) горных

пород и минералов в обычных астрономических единицах — годах.

Для изображения па геологических картах выделенным подразделениям были присвоены определенные цвет и индекс (буквенно-цифровое обозначение). Наиболее крупное геохропологическое подразделение было названо эрой, соответствующее эре стратиграфическое подразделение — группой. Вся геологическая история Земли подразделялась па четыре эры:

архейскую или археозойскую (от греч. «архсос» — древнейший, «зоо» — жизнь) — эра древнейшей жизни, индекс А, цвет темно-розовый;

• палеозойскую (от греч. «палеос» — древний) — эра древней жизни, индекс Pz;

• мезозойскую (от греч. «мезос» — средний) — эра средней жизни, Mz;

• кайнозойскую (от греч. «кайнос» — новый) — эра повой жизни, Kz.

Эры подразделялись на периоды, соответственно группы — па системы; периоды — на эпохи, системы — на отделы; эпохи — на века, отделы — на ярусы. Группы, системы, ярусы имеют те же названия, что и соответствующие им эры, периоды, века.

 

18. Определение изотопного возраста геологических образований. Важнейшие изотопно-радиометрические методы: уран-торий-свинцовый, калий-аргоновый, рубидий-стронциевый, самарий-неодимовый, радиоуглеродный. Возраст Земли и пород земной коры.

Методы ядерной геохронологии в наше время являются наиболее точными для определения абсолютного возраста горных пород, в основе их лежит явление самопроизвольного превращения радиоактивного изотопа одного элемента в стабильный изотоп другого. Суть методов состоит в определении соотношений между количеством радиоактивных элементов и количеством устойчивых продуктов их распада в горной породе. По скорости распада изотопа, которая для определенного радиоактивного изотопа есть величина постоянная, количеству радиоактивных и образовавшихся стабильных изотопов, рассчитывают время, прошедшее с начала образования минерала (соответственно и породы).

Разработано большое число радиоактивных методов определения абсолютного возраста: свинцовый, калиево-аргоновый, рубидиево-стронциевый, радиоуглеродный и др. (возраст Земли 4,6 млрд лет установлен с применением свинцового метода).

Урано-свинцовые методы и ториево-свинцовый используются для определения возраста основных магматических и метаморфических пород. Калий-аргоновый метод применяется наиболее широко, он может быть использован для любых магматических, метаморфических и многих осадочных пород. Радиоуглеродный метод применяется для расчленения толщ четвертичных осадков и определения возраста молодых отложений, а также в археологии.

Возраст Земли - время, которое прошло с момента образования Земли как самостоятельной планеты. Возраст Земли составляет 4,54 миллиардов лет(4,54·109 лет ±1%). Эти данные базируются на радиоизотопной датировке не только земных образцов

ВОЗРАСТ ЗЕМНОЙ КОРЫ

— радиологические методы позволяют оценить В. з. к. или, точнее, возраст древнейших участков земной поверхности. Наиболее детально этот вопрос рассматривался в связи с происхождением и эволюцией рудного свинца, изотопный состав которого не остается постоянным во времени В. з. к. составляет ~ 4·109 лет.

 

19. Определение процесса вулканизма. Продукты вулканической деятельности: жидкие, твердые и газообразные. Наземные и подводные извержения. Типы вулканов по характеру вулканической постройки: центрального типа (стратовулканы, шлаковые конусы, щитовые), трещинного типа.

ПОД ВУЛКАНИЗМОМ ПОНИМАЮТ СОВОКУПНОСТЬ ПРОЦЕССОВ, СВЯЗАННЫХ С ЗАРОЖДЕНИЕМ, ДВИЖЕНИЕМ И ИЗЛИЯНИЕМ МАГМАТИЧЕСКИХ РАСПЛАВОВ НА ПОВЕРХНОСТЬ ЗЕМЛИ.

Под вулканом понимают вулканическую постройку, возвышающуюся над поверхностью Земли и магмаподводящий канал

При извержении вулкана выделяются продукты вулканической деятельности, которые могут быть жидкими, газообразными и твердыми.

Газообразные - фумаролы и софиони, играют важную роль в вулканической деятельности. Во время кристаллизации магмы на глубине выделяющиеся газы поднимают давление до критических значений и вызывают взрывы, выбрасывая на поверхность сгустки раскаленной жидкой лавы. Также при извержении вулканов происходит мощное выделение газовых струй, создающих в атмосфере огромные грибовидные облака.

Состав газовых выделений во многом зависит от температуры. Различают следующие типы фумарол:

a) Сухие - температура около 5000с, почти не содержит водяных паров; насыщен хлористыми соединениями.

b) Кислые, или хлористоводородно-сернистые - температура приблизительно равна 300-4000с.

c) Щелочные, или аммиачные - температура не больше 1800с.

d) Сернистые, или сольфатары - температура около 1000с, главным образом состоит из водяных паров и сероводорода.

e) Углекислые, или моферы - температура меньше 1000с,преимущественно углекислый газ.

 

Жидкие - характеризуются температурами в пределах 600-12000с. Представлена именно лавой.

Твердые продукты включают в себя вулканические бомбы, лапилли, вулканический песок и пепел. В момент извержения они вылетают из кратера со скоростью 500-600м/c. Вулканические бомбы - крупные куски затвердевшей лавы размером в поперечнике от нескольких сантиметров до 1м и более, а в массе достигают нескольких тонн. Лапилли - сравнительно мелкие обломки шлака величиной 1,5-3см, имеющие разнообразные формы. Вулканический песок - состоит из сравнительно мелких частиц лавы (і 0,5 см)

Наземные вулканы обычно представляют собой отдельные конусовидные горы (вулканические конусы) с центральным кратером, сложенные продуктами извержений. Размеры вулканов зависят от их гипсометрического положения.

Наиболее интенсивный вынос вулканического материала (около 4 км3 в год) происходит вдоль рифтовых зон срединно-океанических хребтов. Вулканизм здесь проявляется в виде спокойных лавовых трещинных излияний на глубине 3—4 км и практически недоступен непосредственному наблюдению

Вулканы центрального типа имеют центральный подводящий канал, или жерло, ведущее к поверхности от магматического очага. Жерло оканчивается расширением, кратером, который по мере роста вулканической постройки перемещается вверх. У вулканов центрального типа могут быть побочные, или паразитические, кратеры, которые располагаются на его склонах и приурочены к кольцевым или радиальным трещинам. Нередко в кратерах существуют озёра жидкой лавы. Если магма вязкая, то образуются купола выжимания, которые закупоривают жерло, подобно «пробке», что приводит к сильнейшим взрывным извержениям, когда поток газов бу

Щитовидные вулканы, или «щитовые вулканы». Образуются в результате многократных выбросов жидкой лавы. Эта форма характерна для вулканов, извергающих базальтовую лаву низкой вязкости: она длительное время вытекает как из центрального жерла, так и из боковых кратеров вулкана. Лава равномерно растекается на многие километры; постепенно из этих наслоений формируется широкий «щит» с пологими краями. Пример — вулкан Мауна-Лоа на Гавайях, где лава стекает прямо в океан; его высота от подножия на дне океана составляет примерно десять километров (при этом подводное основание вулкана имеет[6] длину 120 км и ширину 50 км).

Шлаковые конусы. При извержении таких вулканов крупные фрагменты пористых шлаков нагромождаются вокруг кратера слоями в форме конуса, а мелкие фрагменты формируют у подножия покатые склоны; с каждым извержением вулкан становится всё выше. Это — самый распространённый тип вулканов на суше. В высоту они — не больше нескольких сотен метров. Пример — вулкан Плоский Толбачик на Камчатке, который взорвался в декабре 2012 года.квально вышибает «пробку» из жерла.

Формы вулканов центрального типа зависят от состава и вязкости магмы

Трещинные вулканы. Они проявляются в излиянии лавы на земную поверхность по крупным трещинам или расколам. В отдельные отрезки времени, в основном на доисторическом этапе, этот тип вулканизма достигал довольно широких масштабов, в результате чего на поверхность Земли выносилось огромное количество вулканического материала - лавы.

20. Строение вулканических аппаратов центрального типа: конус, жерло, кратер, бокки, сомма, кальдера, баранкосы. Виды вулканов по характеру извержений (эффузивные, эксплозивные, промежуточного типа). Поствулканическая деятельность. Образование фумарол, сольфатар, мофет, гейзеров, термальных источников.

Жерло вулкана – вертикальный или почти вертикальный канал, соединяющий магматический очаг вулкана с поверхностью земли, где жерло заканчивается кратером.Логичнее называть жерлом вулкана только верхнюю часть подводящего канала. Форма жерл вулканов центрального типа близка к цилиндрической. От магмоподводящего канала в теле вулкана могут отходить второстепенные выводные каналы в стороны, давая начало боковым кратерам. Жерло вулкана может быть сложено туфами, лавой, кластолавой, а также частично или полностью кристаллическими магматическими породами. И это столбообразное тело называется некком.

Конус вулканический – вулканическая постройка, имеющая форму конуса со срезанной вершиной, сформированная вокруг жерла из вулканических пород. Крутизна склона конуса обусловлена соотношением эффузивных и эксплозивных пород и их составом. Выделяются пирокластические или эксплозивные лавовые конусы, экструзивные (иглы, обелиски и др.) купола и сложные или комбинированные конусы. Сложные конусы, называемые также стратовулканами, состоят из перемежающихся слоёв лавы и пирокластического материала. На склонах главного конуса могут быть мелкие дополнительные или паразитические конуса.

Кратер вулканический – впадина в виде чаши или воронки, образовавшаяся в результате активной, преимущественно эксплозивной деятельности вулкана. Кратер тесно связан с жерлом и вообще вулканическим каналом и генетически неотделим от них. Первичная форма кратера, в которой соединяются понятия вулкана и кратера называется мааром, т.е. это зарождающиеся вулканы, представленные кратером взрыва с пологим дном, которые не имеют ещё конуса, либо конус очень маленький Поперечник кратера редко превышает 2-2.5 км, а глубина – от нескольких десятков до нескольких сотен метров. На дне кратера, засыпанном пирокластическим материалом, могут находиться бокки (отверстия на дне кратера, откуда происходят слабые извержения), фумаролы (выходы из трещин горячего вулканического газа и пара в виде струй или спокойно парящих масс), сольфатары (источники пара, содержащие сероводород или сернистый газ) и горячие источники.

Кальдера – циркообразная впадина с крутыми стенками и с более или менее ровным дном, образовавшаяся не в результате активной деятельности вулкана, а после неё вследствие провала вершины вулкана, а иногда и прилегающей местности. Образуются кальдеры в результате уменьшения давления или истощения магматической камеры и последующего проседания накопленных вулканогенных образований обычно по кольцевым разломам. Размеры кальдер до 10-15 км и более в поперечнике. Они подразделяются на кальдеры оседания, обрушения и провальные. Кроме того, выделяются кальдеры взрывные, когда явления обрушения и оседания имеют второстепенное значение, и кальдеры-вулканы, образовавшиеся на месте древнего вулкана.

Кальдеры, образовавшиеся в современное время, бывают окружены валом, называемым соммой. Она сложена вулканическими породами и имеет пологую внешнюю и крутую внутреннюю поверхности. Кольцевые долины (депрессии) в кальдере, обусловленные кольцевыми разломами и расположенные между соммой и молодым вулканом у двойных вулканов называются атрио.

1. Эффузивные наземные извержения характеризуются господством лавы в составе продуктов и отсутствием сильных взрывов; связаны с рифтовыми структурами; изливают подвижную базальтовую (основную) лаву. Исландский (трещинный) тип извержений характеризуется тем, что магма приближается к поверхности по узким и длинным трещинам. Гавайский тип извержений очень близок к трещинным, но подъем лавы здесь происходит через трубообразный канал.

2. Эффузивные подводныеизвержения являются самыми многочисленными и наименее изученными. Они также приурочены к рифтовым структурам, отличаются господством базальтовых лав. На дне океана при глубине 2 км и более давление воды столь велико, что взрывов не происходит, а значит, и пирокластов не возникает

ПРОЦЕССЫ ПОСТВУЛКАНИЧЕСКИЕ совокупность минералообразующих процессов, которые следуют за магм

Фумаролы- небольшие отверстия и трещинки, по к-рым поднимаются струи горячих водных паров и газов (H2O, HCl, HF, SO2, CO2, H2S, H2 и др.), выделяющихся из магмы и ещё не остывших лавовых потоков и пироклас-тич. отложений расположены в кратере, на склонах и y подножия вулканов. C понижением темп-ры пары воды переходят в жидкое состояние; в зависимости от термодинамич. условий в ней растворяются нек-рые совместно выделяющиеся газы, a также газы и вещества, возникающие в результате реакций c боковыми породами и захваченные по пути движения к поверхности Земли.

 

Сольфатары — испарения сернистого газа и паров воды с примесью углекислого газа, сероводорода и других веществ, которые выделяются из трещин и каналов на стенках и дне вулканического кратера, а также на склонах вулканов. Температура сольфатар достигает 100 — 300°С.Это явление характерно для потухших или близких к этому вулканов; как и фумаролы и гейзеры, сольфатары являются примером вторичной вулканической активности.

Мофеты— трещины и отверстия в вулканических районах, выделяющие струи углекислого газа с примесью водяного пара и других газов (азота, водорода, метана). Температура выделяемых газов не превышает 100 °С.

Ге́йзер— источник, периодически выбрасывающий фонтаны горячей воды и пара. Гейзеры являются одним из проявлений поздних стадий вулканизма, распространены в областях современной вулканической деятельности.

Закономерности распределения действующих и потухших вулканов на поверхности Земли. Основные разновидности вулканических пород (по кремне-кислотности). Полезные ископаемые, связанные с вулканами.

При вулканическом извержении происходит выход магмы на поверхность Земли. Остывая и отвердевая, излившаяся магма, или лава, образует вулканические горные породы. По статистике, в течение последних 180 миллионов лет на поверхность Земли ежегодно выносилось в среднем 30 кубических километров вулканического материала. Около 75% вулканических пород накапливалось на дне океанов, 20% — на островах в зонах перехода от океанов к континентам и только 5% на суше.

Глубинная магма поднимается неестественным каналам и трещинам земной коры и образует вулканические покровы и активные вулканы. На своем пути к поверхности она теряет содержащиеся в ней газы н изливается уже в дегазованном состоянии. Излившуюся магму называют лавой. В контакте с атмосферой лава быстро остывает и отвердевает, образуя вулканические, или эффузивные горные породы. Быстрота остывания обуславливает особую структуру вулканических горных пород: для них характерны кристаллы небольшого размера, многие из которых невозможно разглядеть невооруженным глазом. Кроме того, они часто содержат стекло некристаллическое вещество, образующееся в результате сверхбыстрого остывания магмы.

Самыми распространенными типами вулканических горных пород являются базальты, андезиты, риолиты, трахиты и фонолиты.

Действующим прежде называли вулкан, который либо извергается сейчас, либо о его извержениях сохранились записи с подробным отчетом. Плинии описал гигантскую тучу, повисшую над Везувием, и пепел, падавший «все горячее и гуще» на Помпеи и Геркуланум во время извержения. Так мог выглядеть город Геркуланум, когда римлянин Плиний описывал грандиозное извержение вулкана Везувий в 79 г. н. э., свидетелем которого он был. Его сообщение считается одним из письменных отчетов об извержении.

Вулкан считается потухшим, если он не проявлял признаков активности уже 10 000 лет и, значит, вероятность его извержения в будущем крайне мала. Но иногда «потухший» вулкан вдруг извергается и его приходится переводить в разряд действующих.

Все полезные ископаемые по условиям их образования разделяются на глубинные и поверхностные. Глубинные месторождения называются также эндогенными ("эндо" - внутри, "генная" - рожденная), а поверхностные - экзогенными ("экзо" - снаружи).
Формирование глубинных, или эндогенных, месторождений обычно связано с внедрением в земную кору и застыванием раскаленных подземных расплавов, или магм. Поэтому такие месторождения иногда называют магматогенными или магмой рожденными. Магма по трещинам проникает в горные породы. При этом только незначительная часть ее в вулканах достигает поверхности Земли, образуя потоки лавы и скопления вулканического пепла, создающего туфы. Большее количество магмы не доходит до земной поверхности и застывает на глубине, образуя глубинные кристаллические магматические породы, такие, как габбро, диориты, граниты и им подобные. Застывшие на глубине и на поверхности Земли магматические породы широко используются в качестве природных каменных строительных материалов.

22. Понятие об интрузивном магматизме. Представления о происхождении магм и уровнях их зарождения. Основные разновидности интрузивных пород и их отличия от вулканических. Процессы внутри магматических камер: ликвация, гравитационно-кристаллизационная дифференциация, ассимиляция.

Под интрузивным магматизмом (плутонизмом) понимают процессы внедрения магматического расплава и последующей кристаллизации его па различных глубинах земной коры с образованием магматических тел (интрузивов или интрузивных массивов, плутонов). Образующиеся при этом полнокристаллические горные породы, слагающие тела, называют интрузивными. В результате последующих геологических процессов (тектонических горообразующих движений, эрозии и денудации) интрузивные массивы оказываются выведенными на дневную поверхность и становятся доступными непосредственному изучению различными методами. Площади интрузивных массивов колеблются в широких пределах:. Процессы внутренней динамики (эндогенные) от нескольких квадратных метров (и менее) до многих сотен тысяч квадратных километров (интрузивный массив на Аляске занимает площадь около 400 тыс. кв. км, имея в длину около 2000, а в ширину до Залегая среди вмещающих пород различного состава (или пород рамы интрузива), они имеют разнообразную, чаще всего неправильную форму, ограничиваясь с боков контактами интрузива, сверху — кровлей, или апикальной поверхностью.

По глубине кристаллизации магматического расплава интрузивы разделяют на абиссальные (или глубинные), сформированные на глубинах, достигающих нескольких километров и глубже, и полуглубиипые (или гипабиссалъные), кристаллизация которых происходит на относительно небольшой глубине. Интрузивные породы, как и магматические породы в целом, по содержанию кремнезема подразделяются на четыре группы: кислые (Si02

= 64-78%), средние (Si02

= 53-64%), основные (Si02

= 44-

-53 %), ультраосиовные (Si02

= 30-44 %). Главными представителями абиссальных кислых пород являются граниты, средних — диориты, основных — габбро и ультраосновных — дуниты и перидотиты.

 

Магма — расплавленная огненно-жидкая силикатная масса, возникающая внутри земной коры или верхней мантии и образующая призастывании магматические горные породы. Магма, изливающаяся па земную поверхность, называется лавой.

Магмы разных типов имеют различные физические свойства

Температура силикатных магм в момент зарождения варьируется от 1800-1600 до 600-500 °С. Плотность жидких магм равна 2,2-3 г/см: и примерно на 10 % ниже плотности твердых пород соответствующего состава. Максимальная плотность характерна для глубинных мантийных магм. Вязкость магм определяет их подвижность (текучесть). Наименьшей вязкостью и максимальной подвижностью обладают высокотемпературные магмы ультраосновного и основного состава, а наибольшая вязкость характерна для кислых магм, возникающих при относительно низкой температуре. Присутствие летучих значительно понижает вязкость расплавов.

Существует несколько механизмов зарождения родоначальных мат. Одним из них является нагревание выше температуры плавления глубинного вещества, то есть выше температуры солидуса

Другим возможным механизмом служит адиабатический (почти изотермический) подъем нагретого вещества, при котором на определепиойглубине достигается температура солидуса Этот механизм реализуется при быстром перемещении крупных масс нагретого и пластичного глубинного материала. Третий связан с дегидратацией гидроксилсодержащих минералов, изкоторых состоит глубинное вещество Так, например, слюды при нагревании выделяют до 4 % воды. Если в магматическом источнике имеется вода, то температура плавления глубинного силикатного вещества понижается на десятки и сотни градусов.

Вулканические горные породы различаются по химическому составу, структурно-текстурным особенностям и по степени сохранности вещества пород. По химическому составу эффузивные вулканические горные породы делятся на щёлочноземельные и щелочные горные породы и, кроме того, на основные горные породы (недосыщенные кремнеки




Дата добавления: 2014-12-20; просмотров: 97 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2024 год. (0.056 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав