Читайте также:
|
|
Логическая операция ИЛИ. Логическую функцию принято задавать в виде таблицы. В левой части этой таблицы перечисляются все возможные значения аргументов функции, т.е. входные величины, а в правой указывается соответствующее им значение логической функции. Для элементарных функций получается таблица истинности данной логической операции. Для операции ИЛИ таблица истинности имеет вид:
Операцию ИЛИ называют также логическим сложением, и потому её можно обозначать знаком «+».
Рассмотрим сложное единичное высказывание: «Летом я поеду в деревню или в туристическую поездку». Обозначим через А простое высказывание «Летом я поеду в деревню», а через В - простое высказывание «Летом я поеду в туристическую поездку». Тогда логическое выражение сложного высказывания имеет вид А+В, и оно будет ложным только, если ни одно из простых высказываний не будет истинным.
Логическая операция И. Таблица истинности для этой функции имеет вид:
Из таблицы истинности следует, что операция И - это логическое умножение, которое ничем не отличается от традиционно известного умножения в обычной алгебре. Операцию И можно обозначить знаком по-разному:
В формальной логике операции логического умножения соответствуют связки и, а, но, хотя.
Логическая операция НЕ. Эта операция является специфичной для алгебры логики и не имеет аналога в обычной алгебре. Она обозначается чертой над значением переменной, либо знаком приставки перед значением переменной:
Читается в обоих случаях одинаково «Не А». Таблица истинности для этой функции имеет вид:
В вычислительной технике операцию НЕ называют отрицанием или инверсией, операцию ИЛИ - дизъюнкцией, операцию И - конъюнкцией. Набор логических функций “И”, “ИЛИ”, “НЕ” является функционально полным набором или базисом алгебры логики. С помощью него можно выразить любые другие логические функции, например операции “строгой дизъюнкции”, “импликации” и “эквивалентности” и др. Рассмотрим некоторые из них.
Дата добавления: 2014-12-20; просмотров: 138 | Поможем написать вашу работу | Нарушение авторских прав |