Студопедия
Главная страница | Контакты | Случайная страница

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Преобразование Галилея в классической механике. Постулаты СТО и преобразования Лоренца. Следствия СТО.

Читайте также:
  1. I. По последствиям
  2. II. ПОСЛЕДСТВИЯ ГРЕХОПАДЕНИЯ В ОТНОШЕНИЯХ МУЖЧИНЫ И ЖЕНЩИНЫ.
  3. II. Экономические последствия безработицы
  4. III. Назовите основные последствия прямохождения человека (т.е. изменения в строении, физиологии, поведении) в опорно-двигательной системе.
  5. IV. Ордынское иго на Руси, его сущность и последствия.
  6. Mосковское царство в эпоху Ивана Грозного. Присоединение Башкирии к русскому государству и его последствия.
  7. Агроэкосистемы, их отличия от природных экосистем. Последствия деятельности человека в экосистемах. Сохранение экосистем.
  8. Алгебраические преобразования систем линейных уравнений
  9. Александр II. Реформы 1860-1870 гг. в России, их последствия, значения
  10. Альтернативы развития России в феврале-октябре 1917 г. Приход к власти большевиков и первые преобразования советской власти (осень 1917- лето 1918 гг.).

Преобразования Галилея - в классической механике преобразования координат и времени при переходе от одной инерциальной системы отсчета (ИСО) к другой. Термин был предложен Филиппом Франком в 1909 году. Преобразования Галилея подразумевают одинаковость времени во всех системах отсчета («абсолютное время») и выполнение принципа относительности (принцип относительности Галилея).

Преобразования Галилея являются предельным (частным) случаем преобразований Лоренца для скоростей, малых по сравнению со скоростью света в пустоте и в ограниченном объёме пространства. Для скоростей вплоть до порядка скоростей движения планет в Солнечной системе (и даже больших), преобразования Галилея приближенно верны с очень большой точностью.

Специальная теория относительности (СТО; также частная теория относительности) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности.

Инерциальная система отсчёта (ИСО) — это такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно. Событием называется любой физический процесс, который может быть локализован в пространстве, и имеющий при этом очень малую длительность. Другими словами, событие полностью характеризуется координатами (x, y, z) и моментом времени t. Примерами событий являются: вспышка света, положение материальной точки в данный момент времени и т. п.

Принцип относительности: ключевым для аксиоматики специальной теории относительности является принцип относительности, утверждающий равноправие инерциальных систем отсчёта. Это означает, что все физические процессы в инерциальных системах отсчёта описываются одинаковым образом.

Для этого необходимо рассмотреть три инерциальные системы S1, S2 и S3. Пусть скорость системы S2 относительно системы S1 равна v 1, скорость системы S3 относительно S2 равна v 2, а относительно S1, соответственно, v 3. Записывая последовательность преобразований (S2, S1), (S3, S2) и (S3, S1), можно получить следующее равенство:

Преобразования (S2, S1) (S3, S2) имеют вид:

где γ1 = γ(v 1), и т.д. Подстановка (x 2, t 2) из первой системы во вторую, даёт:

Второе равенство является записью преобразований между системами S3 и S1. Если приравнять коэффициенты при x 1 в первом уравнении системы и при t 1 во втором, то:

Разделив одно уравнение на другое, несложно получить искомое соотношение.

Существование обратного преобразования между ИСО, отличающегося от прямого только заменой знака относительной скорости, позволяет найти функцию:

.

В силу принципа относительности две инерциальные системы отсчёта S и S' полностью равноправны. Поэтому должно существовать обратное преобразование от S' к S, в котором перед скоростью должен быть знак минус:

Во втором равенстве подставлено прямое преобразование:

и учтено, что Воспользовавшись свойством чётности γ(v) (аксиома изотропности), несложно получить, что . При извлечении квадратного корня необходимо выбрать знак плюс, чтобы, например, время событий, происходящих в точке x=0, были положительными t ' = γ(v) t при t > 0 (время "течёт" в одну сторону).

Таким образом, с точностью до произвольной константы α, получается явный вид преобразований между двумя ИСО. О численном значении константы α и её знаке без обращения к эксперименту ничего сказать нельзя [14]. Если α > 0, то удобно ввести обозначение α = 1 / c 2. Тогда преобразования принимают следующий вид:

и называются преобразованиями Лоренца.




Дата добавления: 2015-01-30; просмотров: 185 | Поможем написать вашу работу | Нарушение авторских прав




lektsii.net - Лекции.Нет - 2014-2025 год. (0.007 сек.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав