Читайте также:
|
|
Преобразования Галилея - в классической механике преобразования координат и времени при переходе от одной инерциальной системы отсчета (ИСО) к другой. Термин был предложен Филиппом Франком в 1909 году. Преобразования Галилея подразумевают одинаковость времени во всех системах отсчета («абсолютное время») и выполнение принципа относительности (принцип относительности Галилея).
Преобразования Галилея являются предельным (частным) случаем преобразований Лоренца для скоростей, малых по сравнению со скоростью света в пустоте и в ограниченном объёме пространства. Для скоростей вплоть до порядка скоростей движения планет в Солнечной системе (и даже больших), преобразования Галилея приближенно верны с очень большой точностью.
Специальная теория относительности (СТО; также частная теория относительности) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности.
Инерциальная система отсчёта (ИСО) — это такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно. Событием называется любой физический процесс, который может быть локализован в пространстве, и имеющий при этом очень малую длительность. Другими словами, событие полностью характеризуется координатами (x, y, z) и моментом времени t. Примерами событий являются: вспышка света, положение материальной точки в данный момент времени и т. п.
Принцип относительности: ключевым для аксиоматики специальной теории относительности является принцип относительности, утверждающий равноправие инерциальных систем отсчёта. Это означает, что все физические процессы в инерциальных системах отсчёта описываются одинаковым образом.
Для этого необходимо рассмотреть три инерциальные системы S1, S2 и S3. Пусть скорость системы S2 относительно системы S1 равна v 1, скорость системы S3 относительно S2 равна v 2, а относительно S1, соответственно, v 3. Записывая последовательность преобразований (S2, S1), (S3, S2) и (S3, S1), можно получить следующее равенство:
Преобразования (S2, S1) (S3, S2) имеют вид:
где γ1 = γ(v 1), и т.д. Подстановка (x 2, t 2) из первой системы во вторую, даёт:
Второе равенство является записью преобразований между системами S3 и S1. Если приравнять коэффициенты при x 1 в первом уравнении системы и при t 1 во втором, то:
Разделив одно уравнение на другое, несложно получить искомое соотношение.
Существование обратного преобразования между ИСО, отличающегося от прямого только заменой знака относительной скорости, позволяет найти функцию:
.
В силу принципа относительности две инерциальные системы отсчёта S и S' полностью равноправны. Поэтому должно существовать обратное преобразование от S' к S, в котором перед скоростью должен быть знак минус:
Во втором равенстве подставлено прямое преобразование:
и учтено, что Воспользовавшись свойством чётности γ(v) (аксиома изотропности), несложно получить, что
. При извлечении квадратного корня необходимо выбрать знак плюс, чтобы, например, время событий, происходящих в точке x=0, были положительными t ' = γ(v) t при t > 0 (время "течёт" в одну сторону).
Таким образом, с точностью до произвольной константы α, получается явный вид преобразований между двумя ИСО. О численном значении константы α и её знаке без обращения к эксперименту ничего сказать нельзя [14]. Если α > 0, то удобно ввести обозначение α = 1 / c 2. Тогда преобразования принимают следующий вид:
и называются преобразованиями Лоренца.
Дата добавления: 2015-01-30; просмотров: 185 | Поможем написать вашу работу | Нарушение авторских прав |